PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES

被引:1
|
作者
O'Rourke, S. [1 ]
Williams, N. [2 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA
关键词
random matrix; independent and identically distributed matrices; spectral statistic; linear eigenvalue statistics; rate of convergence; circular law; Wasserstein distance; CIRCULAR LAW; GAUSSIAN FLUCTUATIONS; UNIVERSALITY; PRODUCTS;
D O I
10.1137/S0040585X97T991179
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For an n x n independent-entry random matrix X-n with eigenvalues lambda(1), ... , lambda(n), the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118-2143] asserts that the fluctuations of the linear eigenvalue statistics Sigma(n)(i=1) f(lambda(i)) converge to a Gaussian distribution for sufficiently nice test functions f. We study the fluctuations of Sigma(n-K)(i=1) f(lambda(i)), where K randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when K is fixed as well as for the case when K tends to infinity with n. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93-117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of X-n to the circular law in Wasserstein distance, which may be of independent interest.
引用
收藏
页码:613 / 632
页数:20
相关论文
共 50 条
  • [41] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Charles Bordenave
    Pietro Caputo
    Djalil Chafaï
    Communications in Mathematical Physics, 2011, 307 : 513 - 560
  • [42] Local laws for non-Hermitian random matrices and their products
    Goetze, Friedrich
    Naumov, Alexey
    Tikhomirov, Alexander
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [43] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346
  • [44] The Thouless formula for random non-Hermitian Jacobi matrices
    Goldsheid, IY
    Khoruzhenko, BA
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 331 - 346
  • [45] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [46] Characteristic Polynomials of Sparse Non-Hermitian Random Matrices
    Afanasiev, Ievgenii
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (01)
  • [47] Quaternionic R transform and non-Hermitian random matrices
    Burda, Zdzislaw
    Swiech, Artur
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [48] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):
  • [49] Smallest singular value and limit eigenvalue distribution of a class of non-Hermitian random matrices with statistical application
    Bose, Arup
    Hachem, Walid
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 178
  • [50] FLUCTUATIONS OF LINEAR EIGENVALUE STATISTICS OF RANDOM BAND MATRICES
    Jana, I.
    Saha, K.
    Soshnikov, A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2016, 60 (03) : 407 - 443