Spectrum of Non-Hermitian Heavy Tailed Random Matrices

被引:0
|
作者
Charles Bordenave
Pietro Caputo
Djalil Chafaï
机构
[1] IMT UMR 5219 CNRS and Université Paul-Sabatier Toulouse III,Dipartimento di Matematica
[2] Università Roma Tre,undefined
[3] LAMA UMR 8050 CNRS and Université Paris-Est Marne-la-Vallée,undefined
来源
关键词
Spectral Measure; Random Matrice; Random Matrix; Local Convergence; Resolvent Operator;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Xjk)j,k ≥ 1 be i.i.d. complex random variables such that |Xjk| is in the domain of attraction of an α-stable law, with 0 < α < 2. Our main result is a heavy tailed counterpart of Girko’s circular law. Namely, under some additional smoothness assumptions on the law of Xjk, we prove that there exist a deterministic sequence an ~ n1/α and a probability measure μα on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} depending only on α such that with probability one, the empirical distribution of the eigenvalues of the rescaled matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(a_n^{-1}X_{jk})_{1\leq j,k\leq n}}$$\end{document} converges weakly to μα as n → ∞. Our approach combines Aldous & Steele’s objective method with Girko’s Hermitization using logarithmic potentials. The underlying limiting object is defined on a bipartized version of Aldous’ Poisson Weighted Infinite Tree. Recursive relations on the tree provide some properties of μα. In contrast with the Hermitian case, we find that μα is not heavy tailed.
引用
下载
收藏
页码:513 / 560
页数:47
相关论文
共 50 条
  • [1] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Bordenave, Charles
    Caputo, Pietro
    Chafai, Djalil
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 513 - 560
  • [2] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113
  • [3] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [4] The Spectrum of Heavy Tailed Random Matrices
    Gérard Ben Arous
    Alice Guionnet
    Communications in Mathematical Physics, 2008, 278 : 715 - 751
  • [5] The spectrum of heavy tailed random matrices
    Ben Arous, Gerard
    Guionnet, Alice
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (03) : 715 - 751
  • [6] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [7] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [8] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [9] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105
  • [10] Local Laws for Non-Hermitian Random Matrices
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 558 - 560