Spectrum of Non-Hermitian Heavy Tailed Random Matrices

被引:0
|
作者
Charles Bordenave
Pietro Caputo
Djalil Chafaï
机构
[1] IMT UMR 5219 CNRS and Université Paul-Sabatier Toulouse III,Dipartimento di Matematica
[2] Università Roma Tre,undefined
[3] LAMA UMR 8050 CNRS and Université Paris-Est Marne-la-Vallée,undefined
来源
关键词
Spectral Measure; Random Matrice; Random Matrix; Local Convergence; Resolvent Operator;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Xjk)j,k ≥ 1 be i.i.d. complex random variables such that |Xjk| is in the domain of attraction of an α-stable law, with 0 < α < 2. Our main result is a heavy tailed counterpart of Girko’s circular law. Namely, under some additional smoothness assumptions on the law of Xjk, we prove that there exist a deterministic sequence an ~ n1/α and a probability measure μα on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} depending only on α such that with probability one, the empirical distribution of the eigenvalues of the rescaled matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(a_n^{-1}X_{jk})_{1\leq j,k\leq n}}$$\end{document} converges weakly to μα as n → ∞. Our approach combines Aldous & Steele’s objective method with Girko’s Hermitization using logarithmic potentials. The underlying limiting object is defined on a bipartized version of Aldous’ Poisson Weighted Infinite Tree. Recursive relations on the tree provide some properties of μα. In contrast with the Hermitian case, we find that μα is not heavy tailed.
引用
收藏
页码:513 / 560
页数:47
相关论文
共 50 条