PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES

被引:1
|
作者
O'Rourke, S. [1 ]
Williams, N. [2 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA
关键词
random matrix; independent and identically distributed matrices; spectral statistic; linear eigenvalue statistics; rate of convergence; circular law; Wasserstein distance; CIRCULAR LAW; GAUSSIAN FLUCTUATIONS; UNIVERSALITY; PRODUCTS;
D O I
10.1137/S0040585X97T991179
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For an n x n independent-entry random matrix X-n with eigenvalues lambda(1), ... , lambda(n), the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118-2143] asserts that the fluctuations of the linear eigenvalue statistics Sigma(n)(i=1) f(lambda(i)) converge to a Gaussian distribution for sufficiently nice test functions f. We study the fluctuations of Sigma(n-K)(i=1) f(lambda(i)), where K randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when K is fixed as well as for the case when K tends to infinity with n. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93-117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of X-n to the circular law in Wasserstein distance, which may be of independent interest.
引用
收藏
页码:613 / 632
页数:20
相关论文
共 50 条
  • [31] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [32] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113
  • [33] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364
  • [34] Spectral Radii of Large Non-Hermitian Random Matrices
    Tiefeng Jiang
    Yongcheng Qi
    Journal of Theoretical Probability, 2017, 30 : 326 - 364
  • [35] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Bordenave, Charles
    Caputo, Pietro
    Chafai, Djalil
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 513 - 560
  • [36] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [37] Non-Hermitian random matrices and integrable quantum Hamiltonians
    Akuzawa, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) : 1583 - 1588
  • [38] Eigenvector statistics in non-Hermitian random matrix ensembles
    Chalker, JT
    Mehlig, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3367 - 3370
  • [39] Spectral statistics of non-Hermitian random matrix ensembles
    Chen, Ryan C.
    Kim, Yujin H.
    Lichtman, Jared D.
    Miller, Steven J.
    Sweitzer, Shannon
    Winsor, Eric
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8 (02)
  • [40] Eigenvector delocalization for non-Hermitian random matrices and applications
    Luh, Kyle
    O'Rourke, Sean
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 169 - 210