Edge universality for non-Hermitian random matrices

被引:29
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [1 ]
Schroeder, Dominik [2 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Swiss Fed Inst Technol, Inst Theoret Studies, Clausiusstr 47, CH-8092 Zurich, Switzerland
关键词
Ginibre ensemble; Universality; Circular law; Girko's formula; EIGENVALUE STATISTICS; BULK UNIVERSALITY; SPECTRAL-RADIUS; REAL; ENSEMBLES; DISTRIBUTIONS;
D O I
10.1007/s00440-020-01003-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy-Widom distribution at the spectral edges of the Wigner ensemble.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [41] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Indrajit Jana
    Journal of Statistical Physics, 2022, 187
  • [42] Eigenvectors and controllability of non-Hermitian random matrices and directed graphs
    Luh, Kyle
    O'Rourke, Sean
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [43] Mesoscopic central limit theorem for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroder, Dominik
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (3-4) : 1131 - 1182
  • [44] Multiplication law and S transform for non-Hermitian random matrices
    Burda, Z.
    Janik, R. A.
    Nowak, M. A.
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [45] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (04) : 613 - 632
  • [46] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Jana, Indrajit
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (02)
  • [47] Mesoscopic central limit theorem for non-Hermitian random matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Probability Theory and Related Fields, 2024, 188 : 1131 - 1182
  • [48] Bulk universality for complex non-Hermitian matrices with independent and identically distributed entries
    Maltsev, Anna
    Osman, Mohammed
    PROBABILITY THEORY AND RELATED FIELDS, 2024,
  • [49] A limit theorem at the edge of a non-Hermitian random matrix ensemble
    Rider, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3401 - 3409
  • [50] Non-Hermitian Edge Burst
    Xue, Wen-Tan
    Hu, Yu-Min
    Song, Fei
    Wang, Zhong
    PHYSICAL REVIEW LETTERS, 2022, 128 (12)