Mesoscopic central limit theorem for non-Hermitian random matrices

被引:5
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [2 ]
Schroder, Dominik [3 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Dyson Brownian motion; Local law; Girko's formula; Linear statistics; Central limit theorem; LINEAR EIGENVALUE STATISTICS; FIXED-ENERGY UNIVERSALITY; LOCAL SPECTRAL STATISTICS; GAUSSIAN FLUCTUATIONS; CONDITION NUMBER; ENSEMBLES; REAL;
D O I
10.1007/s00440-023-01229-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the mesoscopic linear statistics Sigma(i)f (n(a)(sigma(i) - z(0))) of the eigenvalues {sigma(i)}(i) of large nxn non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any H-0(2) -functions f around any point z0 in the bulk of the spectrum on any mesoscopic scale 0 < a < 1/2. This extends our previous result (Cipolloni et al. in Commun Pure Appl Math, 2019. arXiv:1912.04100), that was valid on the macroscopic scale, a = 0, to cover the entire mesoscopic regime. The main novelty is a local law for the product of resolvents for the Hermitization of X at spectral parameters z(1), z(2) with an improved error term in the entire mesoscopic regime |z(1) - z(2)| >> n(-1/2). The proof is dynamical; it relies on a recursive tandem of the characteristic flow method and the Green function comparison idea combined with a separation of the unstable mode of the underlying stability operator.
引用
收藏
页码:1131 / 1182
页数:52
相关论文
共 50 条
  • [1] Mesoscopic central limit theorem for non-Hermitian random matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Probability Theory and Related Fields, 2024, 188 : 1131 - 1182
  • [2] Central Limit Theorem for Linear Eigenvalue Statistics of Non-Hermitian Random Matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (05) : 946 - 1034
  • [3] A limit theorem at the edge of a non-Hermitian random matrix ensemble
    Rider, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3401 - 3409
  • [4] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [5] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [6] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [7] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [8] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105
  • [9] Local Laws for Non-Hermitian Random Matrices
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 558 - 560
  • [10] Products of independent non-Hermitian random matrices
    O'Rourke, Sean
    Soshnikov, Alexander
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2219 - 2245