Mesoscopic central limit theorem for non-Hermitian random matrices

被引:5
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [2 ]
Schroder, Dominik [3 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Dyson Brownian motion; Local law; Girko's formula; Linear statistics; Central limit theorem; LINEAR EIGENVALUE STATISTICS; FIXED-ENERGY UNIVERSALITY; LOCAL SPECTRAL STATISTICS; GAUSSIAN FLUCTUATIONS; CONDITION NUMBER; ENSEMBLES; REAL;
D O I
10.1007/s00440-023-01229-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the mesoscopic linear statistics Sigma(i)f (n(a)(sigma(i) - z(0))) of the eigenvalues {sigma(i)}(i) of large nxn non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any H-0(2) -functions f around any point z0 in the bulk of the spectrum on any mesoscopic scale 0 < a < 1/2. This extends our previous result (Cipolloni et al. in Commun Pure Appl Math, 2019. arXiv:1912.04100), that was valid on the macroscopic scale, a = 0, to cover the entire mesoscopic regime. The main novelty is a local law for the product of resolvents for the Hermitization of X at spectral parameters z(1), z(2) with an improved error term in the entire mesoscopic regime |z(1) - z(2)| >> n(-1/2). The proof is dynamical; it relies on a recursive tandem of the characteristic flow method and the Green function comparison idea combined with a separation of the unstable mode of the underlying stability operator.
引用
收藏
页码:1131 / 1182
页数:52
相关论文
共 50 条
  • [21] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364
  • [22] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113
  • [23] Spectral Radii of Large Non-Hermitian Random Matrices
    Tiefeng Jiang
    Yongcheng Qi
    Journal of Theoretical Probability, 2017, 30 : 326 - 364
  • [24] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Bordenave, Charles
    Caputo, Pietro
    Chafai, Djalil
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 513 - 560
  • [25] Non-Hermitian random matrices and integrable quantum Hamiltonians
    Akuzawa, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) : 1583 - 1588
  • [26] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [27] Eigenvector delocalization for non-Hermitian random matrices and applications
    Luh, Kyle
    O'Rourke, Sean
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 169 - 210
  • [28] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Charles Bordenave
    Pietro Caputo
    Djalil Chafaï
    Communications in Mathematical Physics, 2011, 307 : 513 - 560
  • [29] Local laws for non-Hermitian random matrices and their products
    Goetze, Friedrich
    Naumov, Alexey
    Tikhomirov, Alexander
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [30] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346