Edge universality for non-Hermitian random matrices

被引:29
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [1 ]
Schroeder, Dominik [2 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Swiss Fed Inst Technol, Inst Theoret Studies, Clausiusstr 47, CH-8092 Zurich, Switzerland
关键词
Ginibre ensemble; Universality; Circular law; Girko's formula; EIGENVALUE STATISTICS; BULK UNIVERSALITY; SPECTRAL-RADIUS; REAL; ENSEMBLES; DISTRIBUTIONS;
D O I
10.1007/s00440-020-01003-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy-Widom distribution at the spectral edges of the Wigner ensemble.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [21] Spectral Radii of Large Non-Hermitian Random Matrices
    Tiefeng Jiang
    Yongcheng Qi
    Journal of Theoretical Probability, 2017, 30 : 326 - 364
  • [22] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Bordenave, Charles
    Caputo, Pietro
    Chafai, Djalil
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 513 - 560
  • [23] Non-Hermitian random matrices and integrable quantum Hamiltonians
    Akuzawa, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) : 1583 - 1588
  • [24] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [25] Eigenvector delocalization for non-Hermitian random matrices and applications
    Luh, Kyle
    O'Rourke, Sean
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 169 - 210
  • [26] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Charles Bordenave
    Pietro Caputo
    Djalil Chafaï
    Communications in Mathematical Physics, 2011, 307 : 513 - 560
  • [27] Local laws for non-Hermitian random matrices and their products
    Goetze, Friedrich
    Naumov, Alexey
    Tikhomirov, Alexander
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [28] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346
  • [29] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [30] The Thouless formula for random non-Hermitian Jacobi matrices
    Goldsheid, IY
    Khoruzhenko, BA
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 331 - 346