Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices

被引:0
|
作者
Ma, Yutao [1 ,2 ]
Wang, Siyu [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Deviation probability; moderate deviation probability; non-Hermitian random matrix; large chiral random matrix;
D O I
10.1515/forum-2023-0253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the chiral non-Hermitian random matrix ensemble with parameters n and v, and let (zeta i)(1 <= i <= n )be its n eigenvalues with positive x-coordinate. In this paper, we establish deviation probabilities and moderate deviation probabilities for the spectral radius (n/n+v)(1/2 )max(1 <= i <= n)|zeta(i)|(2) , as well as (n/n+v)(1/2 )min(1 <= i <= n)|zeta(i)|(2).
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [2] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    [J]. 5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [3] Wigner surmise for Hermitian and non-Hermitian chiral random matrices
    Akemann, G.
    Bittner, E.
    Phillips, M. J.
    Shifrin, L.
    [J]. PHYSICAL REVIEW E, 2009, 80 (06):
  • [4] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [5] Spectral Radii of Large Non-Hermitian Random Matrices
    Tiefeng Jiang
    Yongcheng Qi
    [J]. Journal of Theoretical Probability, 2017, 30 : 326 - 364
  • [6] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364
  • [7] A Multilevel Spectral Indicator Method for Eigenvalues of Large Non-Hermitian Matrices
    Huang, Ruihao
    Sun, Jiguang
    Yang, Chao
    [J]. CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2020, 1 (03): : 463 - 477
  • [8] REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES
    Ipsen, I. C. F.
    Nadler, B.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 40 - 53
  • [9] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    [J]. ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [10] Eigenvalues of non-Hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method
    Belinschi, Serban T.
    Sniady, Piotr
    Speicher, Roland
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 537 : 48 - 83