Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices

被引:0
|
作者
Ma, Yutao [1 ,2 ]
Wang, Siyu [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Deviation probability; moderate deviation probability; non-Hermitian random matrix; large chiral random matrix;
D O I
10.1515/forum-2023-0253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the chiral non-Hermitian random matrix ensemble with parameters n and v, and let (zeta i)(1 <= i <= n )be its n eigenvalues with positive x-coordinate. In this paper, we establish deviation probabilities and moderate deviation probabilities for the spectral radius (n/n+v)(1/2 )max(1 <= i <= n)|zeta(i)|(2) , as well as (n/n+v)(1/2 )min(1 <= i <= n)|zeta(i)|(2).
引用
收藏
页数:30
相关论文
共 50 条
  • [21] New applications of non-Hermitian random matrices
    Zabrodin, A
    [J]. ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S851 - S861
  • [22] Local laws for non-Hermitian random matrices
    F. Götze
    A. A. Naumov
    A. N. Tikhomirov
    [J]. Doklady Mathematics, 2017, 96 : 558 - 560
  • [23] New Applications of Non-Hermitian Random Matrices
    A. Zabrodin
    [J]. Annales Henri Poincaré, 2003, 4 : 851 - 861
  • [24] Edge universality for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 1 - 28
  • [25] Gap probabilities in non-Hermitian random matrix theory
    Akemann, G.
    Phillips, M. J.
    Shifrin, L.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [26] Singular values and eigenvalues of non-Hermitian block Toeplitz matrices
    Tilli, Paolo
    [J]. Calcolo, 1996, 33 (01) : 59 - 69
  • [27] Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices
    Kolesnikov, A.V.
    Efetov, K.B.
    [J]. Waves Random Media, 1999, 9 (02): : 71 - 82
  • [28] Singular values and eigenvalues of non-Hermitian block Toeplitz matrices
    Tilli, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 272 : 59 - 89
  • [29] RESEARCH ON METHODS FOR FINDING EIGENVALUES AND EIGENVECTORS OF NON-HERMITIAN MATRICES
    CAUSEY, RL
    FRANK, WL
    OSBORN, EE
    TARNOVE, I
    YOUNG, D
    [J]. JOURNAL OF THE ACM, 1958, 5 (01) : 105 - 105
  • [30] Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices
    Kolesnikov, AV
    Efetov, KB
    [J]. WAVES IN RANDOM MEDIA, 1999, 9 (02): : 71 - 82