Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices

被引:0
|
作者
Ma, Yutao [1 ,2 ]
Wang, Siyu [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Deviation probability; moderate deviation probability; non-Hermitian random matrix; large chiral random matrix;
D O I
10.1515/forum-2023-0253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the chiral non-Hermitian random matrix ensemble with parameters n and v, and let (zeta i)(1 <= i <= n )be its n eigenvalues with positive x-coordinate. In this paper, we establish deviation probabilities and moderate deviation probabilities for the spectral radius (n/n+v)(1/2 )max(1 <= i <= n)|zeta(i)|(2) , as well as (n/n+v)(1/2 )min(1 <= i <= n)|zeta(i)|(2).
引用
收藏
页码:717 / 746
页数:30
相关论文
共 50 条
  • [41] Eigenvector delocalization for non-Hermitian random matrices and applications
    Luh, Kyle
    O'Rourke, Sean
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 169 - 210
  • [42] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Charles Bordenave
    Pietro Caputo
    Djalil Chafaï
    Communications in Mathematical Physics, 2011, 307 : 513 - 560
  • [43] Local laws for non-Hermitian random matrices and their products
    Goetze, Friedrich
    Naumov, Alexey
    Tikhomirov, Alexander
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [44] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346
  • [45] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [46] The Thouless formula for random non-Hermitian Jacobi matrices
    Goldsheid, IY
    Khoruzhenko, BA
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 331 - 346
  • [47] Characteristic Polynomials of Sparse Non-Hermitian Random Matrices
    Afanasiev, Ievgenii
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (01)
  • [48] On the Eigenvalues of a Non-Hermitian Hamiltonian
    Ergun, Ebru
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 245 - +
  • [49] Quaternionic R transform and non-Hermitian random matrices
    Burda, Zdzislaw
    Swiech, Artur
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [50] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):