Spectral Radii of Large Non-Hermitian Random Matrices

被引:0
|
作者
Tiefeng Jiang
Yongcheng Qi
机构
[1] University of Minnesota,School of Statistics
[2] University of Minnesota Duluth,Department of Mathematics and Statistics
来源
关键词
Spectral radius; Determinantal point process; Eigenvalue; Independence; Non-Hermitian random matrix; Extreme value; 15B52; 60F99; 60G55; 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
By using the independence structure of points following a determinantal point process, we study the radii of the spherical ensemble, the truncation of the circular unitary ensemble and the product ensemble with parameters n and k. The limiting distributions of the three radii are obtained. They are not the Tracy–Widom distribution. In particular, for the product ensemble, we show that the limiting distribution has a transition phenomenon: When k/n→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k/n\rightarrow 0$$\end{document}, k/n→α∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k/n\rightarrow \alpha \in (0,\infty )$$\end{document} and k/n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k/n\rightarrow \infty $$\end{document}, the liming distribution is the Gumbel distribution, a new distribution μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and the logarithmic normal distribution, respectively. The cumulative distribution function (cdf) of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the infinite product of some normal distribution functions. Another new distribution ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is also obtained for the spherical ensemble such that the cdf of ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is the infinite product of the cdfs of some Poisson-distributed random variables.
引用
收藏
页码:326 / 364
页数:38
相关论文
共 50 条
  • [41] Non-Hermitian tridiagonal random matrices and returns to the origin of a random walk
    Cicuta, GM
    Contedini, M
    Molinari, L
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 685 - 699
  • [42] Spectral statistics of non-Hermitian random matrix ensembles
    Chen, Ryan C.
    Kim, Yujin H.
    Lichtman, Jared D.
    Miller, Steven J.
    Sweitzer, Shannon
    Winsor, Eric
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8 (02)
  • [43] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [44] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [45] Analytic approach for the number statistics of non-Hermitian random matrices
    Perez Castillo, Isaac
    Guzman-Gonzalez, Edgar
    Ramos Sanchez, Antonio Tonatiuh
    Metz, Fernando L.
    [J]. PHYSICAL REVIEW E, 2021, 103 (06)
  • [46] Rate of convergence for products of independent non-Hermitian random matrices
    Jalowy, Jonas
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [47] Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution
    Neri, I.
    Metz, F. L.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (03)
  • [48] Non-Hermitian random matrices and the Calogero-Sutherland model
    Shukla, P
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (19)
  • [49] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Indrajit Jana
    [J]. Journal of Statistical Physics, 2022, 187
  • [50] Eigenvectors and controllability of non-Hermitian random matrices and directed graphs
    Luh, Kyle
    O'Rourke, Sean
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26