The Quantum Black-Box Complexity of Majority

被引:0
|
作者
机构
[1] Department of Mathematics,
[2] University of Chicago,undefined
[3] 5734 S. University Avenue,undefined
[4] Chicago,undefined
[5] IL 60637,undefined
[6] USA. hayest@math.uchicago.edu.,undefined
[7] Department of Computer Science,undefined
[8] University of Chicago,undefined
[9] 1100 E. 58th Street,undefined
[10] Chicago,undefined
[11] IL 60637,undefined
[12] USA. kutin@cs.uchicago.edu.,undefined
[13] Computer Sciences Department,undefined
[14] University of Wisconsin,undefined
[15] 1210 W. Dayton Street,undefined
[16] Madison,undefined
[17] WI 53706,undefined
[18] USA. dieter@cs.wisc.edu.,undefined
来源
Algorithmica | 2002年 / 34卷
关键词
Key words. Majority function, Quantum computing, Query complexity, Las Vegas algorithms.;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. We describe a quantum black-box network computing the majority of N bits with zero-sided error ɛ using only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N + O(\sqrt{\smash{N \log (\varepsilon^{-1} \log N)}}})$ \end{document} queries: the algorithm returns the correct answer with probability at least 1 - ɛ , and ``I don't know'' otherwise. Our algorithm is given as a randomized ``XOR decision tree'' for which the number of queries on any input is strongly concentrated around a value of at most 2/3N . We provide a nearly matching lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N - O( \sqrt{{\smash{N}}})$ \end{document} on the expected number of queries on a worst-case input in the randomized XOR decision tree model with zero-sided error o(1) . Any classical randomized decision tree computing the majority on N bits with zero-sided error 1/2 has cost N .
引用
下载
收藏
页码:480 / 501
页数:21
相关论文
共 50 条
  • [1] The quantum black-box complexity of majority
    Hayes, TP
    Kutin, S
    van Melkebeek, D
    ALGORITHMICA, 2002, 34 (04) : 480 - 501
  • [2] The complexity of black-box ring problems
    Arvind, V.
    Das, Bireswar
    Mukhopadhyay, Partha
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 126 - 135
  • [3] BLACK-BOX COMPLEXITY OF LOCAL MINIMIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (01) : 60 - 80
  • [4] Note on quantum black-box complexity of almost all Boolean functions
    Ambainis, A
    INFORMATION PROCESSING LETTERS, 1999, 71 (01) : 5 - 7
  • [5] On the Round Complexity of Black-Box Secure MPC
    Ishai, Yuval
    Khurana, Dakshita
    Sahai, Amit
    Srinivasan, Akshayaram
    ADVANCES IN CRYPTOLOGY - CRYPTO 2021, PT II, 2021, 12826 : 214 - 243
  • [6] THE BLACK-BOX QUERY COMPLEXITY OF POLYNOMIAL SUMMATION
    Juma, Ali
    Kabanets, Valentine
    Rackoff, Charles
    Shpilka, Amir
    COMPUTATIONAL COMPLEXITY, 2009, 18 (01) : 59 - 79
  • [7] Reducing the arity in unbiased black-box complexity
    Doerr, Benjamin
    Winzen, Carola
    THEORETICAL COMPUTER SCIENCE, 2014, 545 : 108 - 121
  • [8] The Black-Box Query Complexity of Polynomial Summation
    Ali Juma
    Valentine Kabanets
    Charles Rackoff
    Amir Shpilka
    computational complexity, 2009, 18 : 59 - 79
  • [9] The black-box complexity of nearest neighbor search
    Krauthgamer, R
    Lee, JR
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 858 - 869
  • [10] On the Black-Box Complexity of Sperner's Lemma
    Friedl, Katalin
    Ivanyos, Gabor
    Santha, Miklos
    Verhoeven, Yves F.
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (03) : 629 - 646