The quantum black-box complexity of majority

被引:12
|
作者
Hayes, TP
Kutin, S
van Melkebeek, D
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[3] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
关键词
majority function; quantum computing; query complexity; Las Vegas algorithms;
D O I
10.1007/s00453-002-0981-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a quantum black-box network computing the majority of N bits with zero-sided error the correct answer with probability epsilon using only 2/3 N + O (rootN log(epsilon(-1) log N)) queries: the algorithm returns at least 1 - epsilon, and "I don't know" otherwise. Our algorithm is given as a randomized "XOR decision tree" for which the number of queries on any input is strongly concentrated around a value of at most 2/3 N. We provide a nearly matching lower bound of 2/3 N - O(rootN) on the expected number of queries on a worst-case input in the randomized XOR decision tree model with zero-sided error o(1). Any classical randomized decision tree computing the majority on N bits with zero-sided error 1/2 has cost N.
引用
下载
收藏
页码:480 / 501
页数:22
相关论文
共 50 条
  • [1] The Quantum Black-Box Complexity of Majority
    Algorithmica, 2002, 34 : 480 - 501
  • [2] The complexity of black-box ring problems
    Arvind, V.
    Das, Bireswar
    Mukhopadhyay, Partha
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 126 - 135
  • [3] BLACK-BOX COMPLEXITY OF LOCAL MINIMIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (01) : 60 - 80
  • [4] Note on quantum black-box complexity of almost all Boolean functions
    Ambainis, A
    INFORMATION PROCESSING LETTERS, 1999, 71 (01) : 5 - 7
  • [5] On the Round Complexity of Black-Box Secure MPC
    Ishai, Yuval
    Khurana, Dakshita
    Sahai, Amit
    Srinivasan, Akshayaram
    ADVANCES IN CRYPTOLOGY - CRYPTO 2021, PT II, 2021, 12826 : 214 - 243
  • [6] THE BLACK-BOX QUERY COMPLEXITY OF POLYNOMIAL SUMMATION
    Juma, Ali
    Kabanets, Valentine
    Rackoff, Charles
    Shpilka, Amir
    COMPUTATIONAL COMPLEXITY, 2009, 18 (01) : 59 - 79
  • [7] Reducing the arity in unbiased black-box complexity
    Doerr, Benjamin
    Winzen, Carola
    THEORETICAL COMPUTER SCIENCE, 2014, 545 : 108 - 121
  • [8] The Black-Box Query Complexity of Polynomial Summation
    Ali Juma
    Valentine Kabanets
    Charles Rackoff
    Amir Shpilka
    computational complexity, 2009, 18 : 59 - 79
  • [9] The black-box complexity of nearest neighbor search
    Krauthgamer, R
    Lee, JR
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 858 - 869
  • [10] On the Black-Box Complexity of Sperner's Lemma
    Friedl, Katalin
    Ivanyos, Gabor
    Santha, Miklos
    Verhoeven, Yves F.
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (03) : 629 - 646