The Quantum Black-Box Complexity of Majority

被引:0
|
作者
机构
[1] Department of Mathematics,
[2] University of Chicago,undefined
[3] 5734 S. University Avenue,undefined
[4] Chicago,undefined
[5] IL 60637,undefined
[6] USA. hayest@math.uchicago.edu.,undefined
[7] Department of Computer Science,undefined
[8] University of Chicago,undefined
[9] 1100 E. 58th Street,undefined
[10] Chicago,undefined
[11] IL 60637,undefined
[12] USA. kutin@cs.uchicago.edu.,undefined
[13] Computer Sciences Department,undefined
[14] University of Wisconsin,undefined
[15] 1210 W. Dayton Street,undefined
[16] Madison,undefined
[17] WI 53706,undefined
[18] USA. dieter@cs.wisc.edu.,undefined
来源
Algorithmica | 2002年 / 34卷
关键词
Key words. Majority function, Quantum computing, Query complexity, Las Vegas algorithms.;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. We describe a quantum black-box network computing the majority of N bits with zero-sided error ɛ using only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N + O(\sqrt{\smash{N \log (\varepsilon^{-1} \log N)}}})$ \end{document} queries: the algorithm returns the correct answer with probability at least 1 - ɛ , and ``I don't know'' otherwise. Our algorithm is given as a randomized ``XOR decision tree'' for which the number of queries on any input is strongly concentrated around a value of at most 2/3N . We provide a nearly matching lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N - O( \sqrt{{\smash{N}}})$ \end{document} on the expected number of queries on a worst-case input in the randomized XOR decision tree model with zero-sided error o(1) . Any classical randomized decision tree computing the majority on N bits with zero-sided error 1/2 has cost N .
引用
下载
收藏
页码:480 / 501
页数:21
相关论文
共 50 条
  • [31] THE BLACK-BOX
    WISEMAN, J
    ECONOMIC JOURNAL, 1991, 101 (404): : 149 - 155
  • [32] Lower bounds of quantum black-box complexity and degree of approximating polynomials by influence of Boolean variables
    Shi, YY
    INFORMATION PROCESSING LETTERS, 2000, 75 (1-2) : 79 - 83
  • [33] Memory-restricted black-box complexity of One Max
    Doerr, Benjamin
    Winzen, Carola
    INFORMATION PROCESSING LETTERS, 2012, 112 (1-2) : 32 - 34
  • [34] SOME RESULTS ON COMPLEXITY OF μ-CALCULUS EVALUATION IN THE BLACK-BOX MODEL
    Parys, Pawel
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2013, 47 (01): : 97 - 109
  • [35] Towards Fixed-Target Black-Box Complexity Analysis
    Vinokurov, Dmitry
    Buzdalov, Maxim
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT II, 2022, 13399 : 600 - 611
  • [36] The (1+1) Elitist Black-Box Complexity of LeadingOnes
    Doerr, Carola
    Lengler, Johannes
    ALGORITHMICA, 2018, 80 (05) : 1579 - 1603
  • [37] From black-box complexity to designing new genetic algorithms
    Doerr, Benjamin
    Doerr, Carola
    Ebel, Franziska
    THEORETICAL COMPUTER SCIENCE, 2015, 567 : 87 - 104
  • [38] On Black-Box Complexity of Universally Composable Security in the CRS Model
    Hazay, Carmit
    Venkitasubramaniam, Muthuramakrishnan
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2015, PT II, 2015, 9453 : 183 - 209
  • [39] The (1+1) Elitist Black-Box Complexity of LeadingOnes
    Doerr, Carola
    Lengler, Johannes
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 1131 - 1138
  • [40] On the Black-Box Complexity of Optimally-Fair Coin Tossing
    Dachman-Soled, Dana
    Lindell, Yehuda
    Mahmoody, Mohammad
    Malkin, Tal
    THEORY OF CRYPTOGRAPHY, 2011, 6597 : 450 - +