The Quantum Black-Box Complexity of Majority

被引:0
|
作者
机构
[1] Department of Mathematics,
[2] University of Chicago,undefined
[3] 5734 S. University Avenue,undefined
[4] Chicago,undefined
[5] IL 60637,undefined
[6] USA. hayest@math.uchicago.edu.,undefined
[7] Department of Computer Science,undefined
[8] University of Chicago,undefined
[9] 1100 E. 58th Street,undefined
[10] Chicago,undefined
[11] IL 60637,undefined
[12] USA. kutin@cs.uchicago.edu.,undefined
[13] Computer Sciences Department,undefined
[14] University of Wisconsin,undefined
[15] 1210 W. Dayton Street,undefined
[16] Madison,undefined
[17] WI 53706,undefined
[18] USA. dieter@cs.wisc.edu.,undefined
来源
Algorithmica | 2002年 / 34卷
关键词
Key words. Majority function, Quantum computing, Query complexity, Las Vegas algorithms.;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. We describe a quantum black-box network computing the majority of N bits with zero-sided error ɛ using only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N + O(\sqrt{\smash{N \log (\varepsilon^{-1} \log N)}}})$ \end{document} queries: the algorithm returns the correct answer with probability at least 1 - ɛ , and ``I don't know'' otherwise. Our algorithm is given as a randomized ``XOR decision tree'' for which the number of queries on any input is strongly concentrated around a value of at most 2/3N . We provide a nearly matching lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N - O( \sqrt{{\smash{N}}})$ \end{document} on the expected number of queries on a worst-case input in the randomized XOR decision tree model with zero-sided error o(1) . Any classical randomized decision tree computing the majority on N bits with zero-sided error 1/2 has cost N .
引用
下载
收藏
页码:480 / 501
页数:21
相关论文
共 50 条
  • [41] On Black-Box Complexity of Universally Composable Security in the CRS Model
    Carmit Hazay
    Muthuramakrishnan Venkitasubramaniam
    Journal of Cryptology, 2019, 32 : 635 - 689
  • [42] On Black-Box Complexity of Universally Composable Security in the CRS Model
    Hazay, Carmit
    Venkitasubramaniam, Muthuramakrishnan
    JOURNAL OF CRYPTOLOGY, 2019, 32 (03) : 635 - 689
  • [43] Black-Box Quantum State Preparation without Arithmetic
    Sanders, Yuval R.
    Low, Guang Hao
    Scherer, Artur
    Berry, Dominic W.
    PHYSICAL REVIEW LETTERS, 2019, 122 (02)
  • [44] Robust and Versatile Black-Box Certification of Quantum Devices
    Yang, Tzyh Haur
    Vertesi, Tamas
    Bancal, Jean-Daniel
    Scarani, Valerio
    Navascues, Miguel
    PHYSICAL REVIEW LETTERS, 2014, 113 (04)
  • [45] THE MATHEMATICAL WORLD IN THE BLACK-BOX - SIGNIFICANCE OF THE BLACK-BOX AS A MEDIUM OF MATHEMATIZING
    MAASS, J
    SCHLOGLMANN, W
    CYBERNETICS AND SYSTEMS, 1988, 19 (04) : 295 - 309
  • [46] INSIDE THE BLACK-BOX
    HORGAN, J
    IEEE SPECTRUM, 1986, 23 (11) : 65 - 65
  • [47] INSIDE THE BLACK-BOX
    WILENSKY, GR
    SOCIETY, 1994, 32 (01) : 68 - 69
  • [48] BLACK-BOX BLUES
    SNYDER, EL
    DISCOVER, 1984, 5 (08): : 6 - 6
  • [49] THE TRAGEDY OF THE BLACK-BOX
    DUNTEMANN, J
    DR DOBBS JOURNAL, 1991, 16 (12): : 123 - +
  • [50] DORMANCY - THE BLACK-BOX
    SEELEY, SD
    HORTSCIENCE, 1994, 29 (11) : 1248 - 1248