The Quantum Black-Box Complexity of Majority

被引:0
|
作者
机构
[1] Department of Mathematics,
[2] University of Chicago,undefined
[3] 5734 S. University Avenue,undefined
[4] Chicago,undefined
[5] IL 60637,undefined
[6] USA. hayest@math.uchicago.edu.,undefined
[7] Department of Computer Science,undefined
[8] University of Chicago,undefined
[9] 1100 E. 58th Street,undefined
[10] Chicago,undefined
[11] IL 60637,undefined
[12] USA. kutin@cs.uchicago.edu.,undefined
[13] Computer Sciences Department,undefined
[14] University of Wisconsin,undefined
[15] 1210 W. Dayton Street,undefined
[16] Madison,undefined
[17] WI 53706,undefined
[18] USA. dieter@cs.wisc.edu.,undefined
来源
Algorithmica | 2002年 / 34卷
关键词
Key words. Majority function, Quantum computing, Query complexity, Las Vegas algorithms.;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. We describe a quantum black-box network computing the majority of N bits with zero-sided error ɛ using only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N + O(\sqrt{\smash{N \log (\varepsilon^{-1} \log N)}}})$ \end{document} queries: the algorithm returns the correct answer with probability at least 1 - ɛ , and ``I don't know'' otherwise. Our algorithm is given as a randomized ``XOR decision tree'' for which the number of queries on any input is strongly concentrated around a value of at most 2/3N . We provide a nearly matching lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N - O( \sqrt{{\smash{N}}})$ \end{document} on the expected number of queries on a worst-case input in the randomized XOR decision tree model with zero-sided error o(1) . Any classical randomized decision tree computing the majority on N bits with zero-sided error 1/2 has cost N .
引用
收藏
页码:480 / 501
页数:21
相关论文
共 50 条
  • [21] The Unrestricted Black-Box Complexity of Jump Functions
    Buzdalov, Maxim
    Doerr, Benjamin
    Kever, Mikhail
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1 - 2
  • [22] Unbiased Black-Box Complexity of Parallel Search
    Badkobeh, Golnaz
    Lehre, Per Kristian
    Sudholt, Dirk
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 892 - 901
  • [23] Parallel Black-Box Complexity With Tail Bounds
    Lehre, Per Kristian
    Sudholt, Dirk
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (06) : 1010 - 1024
  • [24] Black-Box Complexity of the Binary Value Function
    Bulanova, Nina
    Buzdalov, Maxim
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 423 - 424
  • [25] Unbiased black-box complexity of parallel search
    Badkobeh, Golnaz
    Lehre, Per Kristian
    Sudholt, Dirk
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8672 : 892 - 901
  • [26] The black-box complexity of nearest-neighbor search
    Krauthgamer, R
    Lee, JR
    THEORETICAL COMPUTER SCIENCE, 2005, 348 (2-3) : 262 - 276
  • [27] Counting complexity of solvable black-box group problems
    Vinodchandran, NV
    SIAM JOURNAL ON COMPUTING, 2004, 33 (04) : 852 - 869
  • [28] Fast Black-Box Quantum State Preparation
    Bausch, Johannes
    QUANTUM, 2022, 6
  • [29] Tutorial: Black-Box Complexity: From Complexity Theory to Playing Mastermind
    Doerr, Benjamin
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 1079 - 1091
  • [30] THE BLACK-BOX
    KYLE, SA
    NEW SCIENTIST, 1986, 110 (1512) : 61 - 61