For a triangulated category T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {T}}$$\end{document}, if C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {C}}$$\end{document} is a cluster-tilting subcategory of T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {T}}$$\end{document}, then the factor category T/C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {T}}{/}{\mathcal {C}}$$\end{document} is an abelian category. Under certain conditions, the converse also holds. This is a very important result of cluster-tilting theory, due to Koenig–Zhu and Beligiannis. Now let B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}$$\end{document} be a suitable extriangulated category, which is a simultaneous generalization of triangulated categories and exact categories. We introduce the notion of pre-cluster tilting subcategory C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {C}}$$\end{document} of B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}$$\end{document}, which is a generalization of cluster tilting subcategory. We show that C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {C}}$$\end{document} is cluster tilting if and only if the factor category B/C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}{/}{\mathcal {C}}$$\end{document} is abelian. Our result generalizes the related results on a triangulated category and is new for an exact category case.
机构:
Univ Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan 8174673441, IranUniv Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan 8174673441, Iran
Asadollahi, Javad
Hafezi, Rasool
论文数: 0引用数: 0
h-index: 0
机构:
Univ Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan 8174673441, Iran
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R ChinaUniv Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan 8174673441, Iran
机构:
Huaqiao Univ, Sch Math Sci, Chenghua North Rd 269, Quanzhou 362021, Fujian, Peoples R ChinaHuaqiao Univ, Sch Math Sci, Chenghua North Rd 269, Quanzhou 362021, Fujian, Peoples R China
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, JapanNagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan