Abelian Categories Arising from Cluster Tilting Subcategories

被引:0
|
作者
Yu Liu
Panyue Zhou
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] Hunan Institute of Science and Technology,College of Mathematics
来源
关键词
Extriangulated categories; Cluster tilting subcategories; Abelian categories; 18E30; 18E10;
D O I
暂无
中图分类号
学科分类号
摘要
For a triangulated category T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, if C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} is a cluster-tilting subcategory of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, then the factor category T/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}{/}{\mathcal {C}}$$\end{document} is an abelian category. Under certain conditions, the converse also holds. This is a very important result of cluster-tilting theory, due to Koenig–Zhu and Beligiannis. Now let B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} be a suitable extriangulated category, which is a simultaneous generalization of triangulated categories and exact categories. We introduce the notion of pre-cluster tilting subcategory C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}, which is a generalization of cluster tilting subcategory. We show that C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} is cluster tilting if and only if the factor category B/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}{/}{\mathcal {C}}$$\end{document} is abelian. Our result generalizes the related results on a triangulated category and is new for an exact category case.
引用
收藏
页码:575 / 594
页数:19
相关论文
共 50 条
  • [31] The Extension Dimension of Subcategories and Recollements of Abelian Categories
    Xin Ma
    Ye Yang Peng
    Zhao Yong Huang
    Acta Mathematica Sinica, English Series, 2024, 40 : 1042 - 1058
  • [32] The Extension Dimension of Subcategories and Recollements of Abelian Categories
    Ma, Xin
    Peng, Ye Yang
    Huang, Zhao Yong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (04) : 1042 - 1058
  • [33] Tilting in Abelian categories and quasitilted algebras
    Happel, D
    Reiten, I
    Smalo, SO
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 120 (575) : 1 - &
  • [34] Relative cluster tilting subcategories in an extriangulated category
    Zhang, Zhen
    Wang, Shance
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1613 - 1624
  • [35] Recollements and n-cluster tilting subcategories
    Long, Taolue
    Zhang, Xiaoxiang
    Zhou, Yukun
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 4046 - 4058
  • [36] nZ-Gorenstein cluster tilting subcategories
    Asadollahi, Javad
    Hafezi, Rasool
    Sadeghi, Somayeh
    JOURNAL OF ALGEBRA, 2021, 580 : 127 - 157
  • [37] *-modules, tilting, and almost abelian categories
    Rump, W
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (08) : 3293 - 3325
  • [38] Two-term relative cluster tilting subcategories, T-tilting modules and silting subcategories
    Zhou, Panyue
    Zhu, Bin
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (09)
  • [39] Abelian Quotients Arising from Extriangulated Categories via Morphism Categories
    Zengqiang Lin
    Algebras and Representation Theory, 2023, 26 : 117 - 136
  • [40] Abelian Quotients Arising from Extriangulated Categories via Morphism Categories
    Lin, Zengqiang
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (01) : 117 - 136