Two-term relative cluster tilting subcategories, T-tilting modules and silting subcategories

被引:4
|
作者
Zhou, Panyue [1 ]
Zhu, Bin [2 ]
机构
[1] Hunan Inst Sci & Technol, Coll Math, Yueyang 414006, Hunan, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-term R[1]-rigid subcategories; Two-term (weak) R[1]-cluster tilting subcategories; T-rigid subcategories; Support T-tilting subcategories; Silting subcategories; TRIANGULATED CATEGORIES; RIGID OBJECTS; MUTATION; ALGEBRAS;
D O I
10.1016/j.jpaa.2020.106365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a triangulated category with shift functor [1] and Ra rigid subcategory of C. We introduce the notions of two-term R[1]-rigid subcategories, two-term (weak) R[1]-cluster tilting subcategories and two-term maximal R[1]-rigid subcategories. Our main result shows that there exists a bijection between the set of two-term R[1]-rigid subcategories of Cand the set of t-rigid subcategories of modR, which induces a one-to-one correspondence between the set of two-term weak R[1]-cluster tilting subcategories of Cand the set of support t-tilting subcategories of modR. This generalizes the main results in [15] where Ris a cluster tilting subcategory. When Ris a silting subcategory, we prove that the two-term weak R[1]-cluster tilting subcategories are precisely two-term silting subcategories in [9]. Thus the bijection above induces the bijection given by Iyama-Jorgensen-Yang in [9]. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Extending (τ-)tilting subcategories and (co)silting modules
    Asadollahi, J.
    Padashnik, F.
    Sadeghi, S.
    Treffinger, H.
    [J]. COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 2148 - 2166
  • [2] Relative cluster tilting subcategories in an extriangulated category
    Zhang, Zhen
    Wang, Shance
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1613 - 1624
  • [3] Tilting modules and the subcategories CiM
    Platzeck, Maria Ines
    Pratti, Nilda Isabel
    [J]. COMMUNICATIONS IN ALGEBRA, 2006, 34 (09) : 3255 - 3266
  • [4] WIDE SUBCATEGORIES OF d-CLUSTER TILTING SUBCATEGORIES
    Herschend, Martin
    Jorgensen, Peter
    Vaso, Laertis
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (04) : 2281 - 2309
  • [5] SUBCATEGORIES INDUCED BY GENERALIZED TILTING MODULES
    ZHOU, ZP
    [J]. COMMUNICATIONS IN ALGEBRA, 1994, 22 (08) : 2817 - 2825
  • [6] From classical tilting to two-term silting
    Aslak Bakke Buan
    [J]. Science China Mathematics, 2019, 62 : 1233 - 1240
  • [7] Relative Rigid Subcategories and τ-Tilting Theory
    Yu Liu
    Panyue Zhou
    [J]. Algebras and Representation Theory, 2022, 25 : 1699 - 1722
  • [8] From classical tilting to two-term silting
    Aslak Bakke Buan
    [J]. Science China Mathematics, 2019, 62 (07) : 1233 - 1240
  • [9] From classical tilting to two-term silting
    Buan, Aslak Bakke
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (07) : 1233 - 1240
  • [10] Relative Rigid Subcategories and τ-Tilting Theory
    Liu, Yu
    Zhou, Panyue
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (06) : 1699 - 1722