Two-term relative cluster tilting subcategories, T-tilting modules and silting subcategories

被引:4
|
作者
Zhou, Panyue [1 ]
Zhu, Bin [2 ]
机构
[1] Hunan Inst Sci & Technol, Coll Math, Yueyang 414006, Hunan, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-term R[1]-rigid subcategories; Two-term (weak) R[1]-cluster tilting subcategories; T-rigid subcategories; Support T-tilting subcategories; Silting subcategories; TRIANGULATED CATEGORIES; RIGID OBJECTS; MUTATION; ALGEBRAS;
D O I
10.1016/j.jpaa.2020.106365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a triangulated category with shift functor [1] and Ra rigid subcategory of C. We introduce the notions of two-term R[1]-rigid subcategories, two-term (weak) R[1]-cluster tilting subcategories and two-term maximal R[1]-rigid subcategories. Our main result shows that there exists a bijection between the set of two-term R[1]-rigid subcategories of Cand the set of t-rigid subcategories of modR, which induces a one-to-one correspondence between the set of two-term weak R[1]-cluster tilting subcategories of Cand the set of support t-tilting subcategories of modR. This generalizes the main results in [15] where Ris a cluster tilting subcategory. When Ris a silting subcategory, we prove that the two-term weak R[1]-cluster tilting subcategories are precisely two-term silting subcategories in [9]. Thus the bijection above induces the bijection given by Iyama-Jorgensen-Yang in [9]. (C) 2020 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [11] TRIANGULATED CATEGORIES WITH CLUSTER TILTING SUBCATEGORIES
    Yang, Wuzhong
    Zhou, Panyue
    Zhu, Bin
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (02) : 703 - 740
  • [12] Symmetric subcategories, tilting modules, and derived recollements
    Chen, Hongxing
    Xi, Changchang
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (05) : 1771 - 1812
  • [13] PARTIAL TILTING MODULES AND COVARIANTLY FINITE SUBCATEGORIES
    HAPPEL, D
    UNGER, L
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) : 1723 - 1727
  • [14] TILTING MODULES ARISING FROM TWO-TERM TILTING COMPLEXES
    Abe, Hiroki
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) : 988 - 997
  • [15] nZ-Gorenstein cluster tilting subcategories
    Asadollahi, Javad
    Hafezi, Rasool
    Sadeghi, Somayeh
    JOURNAL OF ALGEBRA, 2021, 580 : 127 - 157
  • [16] Recollements and n-cluster tilting subcategories
    Long, Taolue
    Zhang, Xiaoxiang
    Zhou, Yukun
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 4046 - 4058
  • [17] CLUSTER-TILTING SUBCATEGORIES IN EXTRIANGULATED CATEGORIES
    Zhou, Panyue
    Zhu, Bin
    THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 221 - 242
  • [18] Intermediate co-t-structures, two-term silting objects, τ-tilting modules, and torsion classes
    Iyama, Osamu
    Jorgensen, Peter
    Yang, Dong
    ALGEBRA & NUMBER THEORY, 2014, 8 (10) : 2413 - 2431
  • [19] ICE-closed subcategories and wide τ-tilting modules
    Enomoto, Haruhisa
    Sakai, Arashi
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 541 - 577
  • [20] On the monomorphism category of n-cluster tilting subcategories
    Javad Asadollahi
    Rasool Hafezi
    Somayeh Sadeghi
    Science China Mathematics, 2022, 65 (07) : 1343 - 1362