Pure semisimple n-cluster tilting subcategories

被引:5
|
作者
Ebrahimi, Ramin [1 ]
Nasr-Isfahani, Alireza [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, POB 81746-73441, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
n-cluster tilting subcategory; Pure semisimple; n-homological pair; Functor category; REPRESENTATION-FINITE ALGEBRAS; RINGS;
D O I
10.1016/j.jalgebra.2019.11.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the viewpoint of higher homological algebra, we introduce pure semisimple n-abelian categories, which are analogs of pure semisimple abelian categories. Let A be an Artin algebra and M be an n-cluster tilting subcategory of Mod-A. We show that M is pure semisimple if and only if each module in M is a direct sum of finitely generated modules. Let m be an n-cluster tilting subcategory of mod-A. We show that Add(m) is an n-cluster tilting subcategory of Mod-A if and only if m has an additive generator if and only if Mod(m) is locally finite. This generalizes Auslander's classical results on pure semisimplicity of Artin algebras. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 194
页数:18
相关论文
共 50 条