Abelian subcategories of triangulated categories induced by simple minded systems

被引:0
|
作者
Peter Jørgensen
机构
[1] Aarhus University,Department of Mathematics
关键词
Cluster category; Derived category; Heart; Orbit category; Simple minded collection; Orthogonal collection; -structure; tilting; 16G10; 16S90; 18E10; 18E40; 18G80;
D O I
暂无
中图分类号
学科分类号
摘要
If k is a field, A a finite dimensional k-algebra, then the simple A-modules form a simple minded collection in the derived category Db(modA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}^{ {\text {b}}}( {\text {mod}}\,A )$$\end{document}. Their extension closure is modA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {mod}}\,A$$\end{document}; in particular, it is abelian. This situation is emulated by a general simple minded collection S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {S}$$\end{document} in a suitable triangulated category C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}$$\end{document}. In particular, the extension closure ⟨S⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \mathscr {S}\rangle $$\end{document} is abelian, and there is a tilting theory for such abelian subcategories of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}$$\end{document}. These statements follow from ⟨S⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \mathscr {S}\rangle $$\end{document} being the heart of a bounded t-structure. It is a defining characteristic of simple minded collections that their negative self extensions vanish in every degree. Relaxing this to vanishing in degrees {-w+1,…,-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ -w+1, \ldots , -1 \}$$\end{document} where w is a positive integer leads to the rich, parallel notion of w-simple minded systems, which have recently been the subject of vigorous interest. If S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {S}$$\end{document} is a w-simple minded system for some w⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w \geqslant 2$$\end{document}, then ⟨S⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \mathscr {S}\rangle $$\end{document} is typically not the heart of a t-structure. Nevertheless, using different methods, we will prove that ⟨S⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \mathscr {S}\rangle $$\end{document} is abelian and that there is a tilting theory for such abelian subcategories. Our theory is based on Quillen’s notion of exact categories, in particular a theorem by Dyer which provides exact subcategories of triangulated categories. The theory of simple minded systems can be viewed as “negative cluster tilting theory”. In particular, the result that ⟨S⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \mathscr {S}\rangle $$\end{document} is an abelian subcategory is a negative counterpart to the result from (higher) positive cluster tilting theory that if T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {T}$$\end{document} is a cluster tilting subcategory, then (T∗ΣT)/[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( \mathscr {T}* \Sigma \mathscr {T})/[ \mathscr {T}]$$\end{document} is an abelian quotient category.
引用
收藏
页码:565 / 592
页数:27
相关论文
共 50 条
  • [1] Abelian subcategories of triangulated categories induced by simple minded systems
    Jorgensen, Peter
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 565 - 592
  • [2] On abelian subcategories of triangulated categories
    Markus Linckelmann
    Mathematische Zeitschrift, 2024, 306
  • [3] On abelian subcategories of triangulated categories
    Linckelmann, Markus
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
  • [4] Torsion Pairs and Simple-Minded Systems in Triangulated Categories
    Dugas, Alex
    APPLIED CATEGORICAL STRUCTURES, 2015, 23 (03) : 507 - 526
  • [5] Torsion Pairs and Simple-Minded Systems in Triangulated Categories
    Alex Dugas
    Applied Categorical Structures, 2015, 23 : 507 - 526
  • [6] Gluing simple-minded collections in triangulated categories
    Sun, Yongliang
    Zhang, Yaohua
    JOURNAL OF ALGEBRA, 2024, 645 : 54 - 85
  • [7] Reductions of triangulated categories and simple-minded collections
    Jin, Haibo
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (04): : 1482 - 1518
  • [8] SIMPLE-MINDED SYSTEMS AND REDUCTION FOR NEGATIVE CALABI-YAU TRIANGULATED CATEGORIES
    Simoes, Raquel Coelho
    Pauksztello, David
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (04) : 2463 - 2498
  • [9] Dimensions of triangulated categories with respect to subcategories
    Aihara, Takuma
    Araya, Tokuji
    Iyama, Osamu
    Takahashi, Ryo
    Yoshiwaki, Michio
    JOURNAL OF ALGEBRA, 2014, 399 : 205 - 219
  • [10] TRIANGULATED CATEGORIES WITH CLUSTER TILTING SUBCATEGORIES
    Yang, Wuzhong
    Zhou, Panyue
    Zhu, Bin
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (02) : 703 - 740