Linear Kernels for Outbranching Problems in Sparse Digraphs

被引:0
|
作者
Marthe Bonamy
Łukasz Kowalik
Michał Pilipczuk
Arkadiusz Socała
机构
[1] Université de Bordeaux,CNRS, LaBRI
[2] University of Warsaw,Institute of Informatics
来源
Algorithmica | 2017年 / 79卷
关键词
Kernelization; Outbranching; Sparse graph; Bounded expansion; -minor-free graphs;
D O I
暂无
中图分类号
学科分类号
摘要
In the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching problems we are given a directed graph D with a designated root r and a nonnegative integer k. The question is whether there exists an outbranching rooted at r that has at least k leaves, or at least k internal vertices, respectively. Both these problems have been studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^2)$$\end{document} vertices are known on general graphs. In this work we show that k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching admits a kernel with O(k) vertices on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}-minor-free graphs, for any fixed family of graphs H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, whereas k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded expansion.
引用
收藏
页码:159 / 188
页数:29
相关论文
共 50 条
  • [41] Majority colorings of sparse digraphs
    Anastos, Michael
    Lamaison, Ander
    Steiner, Raphael
    Szabo, Tibor
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [42] Algorithmic Properties of Sparse Digraphs
    Kreutzer, Stephan
    Muzi, Irene
    de Mendez, Patrice Ossona
    Rabinovich, Roman
    Siebertz, Sebastian
    36TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2019), 2019,
  • [43] Ramsey numbers of sparse digraphs
    Fox, Jacob
    He, Xiaoyu
    Wigderson, Yuval
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 263 (01) : 1 - 48
  • [44] Systematic Fusion of CUDA Kernels for Iterative Sparse Linear System Solvers
    Aliaga, Jose I.
    Perez, Joaquin
    Quintana-Orti, Enrique S.
    EURO-PAR 2015: PARALLEL PROCESSING, 2015, 9233 : 675 - 686
  • [45] Implementing Sparse Linear Algebra Kernels on the Lucata Pathfinder-A Computer
    Krawezik, Geraud P.
    Kuntz, Shannon K.
    Kogge, Peter M.
    2020 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2020,
  • [46] k-KERNELS IN DIGRAPHS FORMED BY SOME OPERATIONS FROM OTHER DIGRAPHS
    Lakshmi, R.
    Sindhu, D. G.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (04): : 585 - 599
  • [47] Polynomial Kernels for Deletion to Classes of Acyclic Digraphs
    Mnich, Matthias
    van Leeuwen, Erik Jan
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [48] Kernels in digraphs with covering number at most 3
    Galeana-Sánchez, H
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 121 - 135
  • [49] Sparse Representation With Kernels
    Gao, Shenghua
    Tsang, Ivor Wai-Hung
    Chia, Liang-Tien
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 423 - 434
  • [50] (k, l)-kernels in the generalized Mycielskian of digraphs
    Lakshmi, R.
    Sindhu, D. G.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)