Linear Kernels for Outbranching Problems in Sparse Digraphs

被引:0
|
作者
Marthe Bonamy
Łukasz Kowalik
Michał Pilipczuk
Arkadiusz Socała
机构
[1] Université de Bordeaux,CNRS, LaBRI
[2] University of Warsaw,Institute of Informatics
来源
Algorithmica | 2017年 / 79卷
关键词
Kernelization; Outbranching; Sparse graph; Bounded expansion; -minor-free graphs;
D O I
暂无
中图分类号
学科分类号
摘要
In the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching problems we are given a directed graph D with a designated root r and a nonnegative integer k. The question is whether there exists an outbranching rooted at r that has at least k leaves, or at least k internal vertices, respectively. Both these problems have been studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^2)$$\end{document} vertices are known on general graphs. In this work we show that k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching admits a kernel with O(k) vertices on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}-minor-free graphs, for any fixed family of graphs H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, whereas k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded expansion.
引用
收藏
页码:159 / 188
页数:29
相关论文
共 50 条
  • [31] H-Kernels in Infinite Digraphs
    Hortensia Galeana-Sánchez
    Rocío Sánchez-López
    Graphs and Combinatorics, 2013, 29 : 913 - 920
  • [32] Kernels in edge-colored digraphs
    Galeana-Sanchez, H
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 87 - 99
  • [33] Kernels of digraphs with finitely many ends
    Walicki, Michal
    DISCRETE MATHEMATICS, 2019, 342 (02) : 473 - 486
  • [34] Kernels in quasi-transitive digraphs
    Galeana-Sanchez, Hortensia
    Rojas-Monroy, Rocio
    DISCRETE MATHEMATICS, 2006, 306 (16) : 1969 - 1974
  • [35] On kernels by monochromatic paths in the corona of digraphs
    Wloch, Iwona
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (04): : 537 - 542
  • [36] Semikernels modulo F and kernels in digraphs
    Galeana-Sánchez, H
    DISCRETE MATHEMATICS, 2000, 218 (1-3) : 61 - 71
  • [37] ON THE EXISTENCE OF (K,L)-KERNELS IN DIGRAPHS
    GALEANASANCHEZ, H
    DISCRETE MATHEMATICS, 1990, 85 (01) : 99 - 102
  • [38] Kernels for deletion to classes of acyclic digraphs
    Agrawal, Akanksha
    Saurabh, Saket
    Sharma, Roohani
    Zehavi, Meirav
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 92 : 9 - 21
  • [39] Sparse solutions of linear complementarity problems
    Xiaojun Chen
    Shuhuang Xiang
    Mathematical Programming, 2016, 159 : 539 - 556
  • [40] Sparse solutions of linear complementarity problems
    Chen, Xiaojun
    Xiang, Shuhuang
    MATHEMATICAL PROGRAMMING, 2016, 159 (1-2) : 539 - 556