Linear Kernels for Outbranching Problems in Sparse Digraphs

被引:0
|
作者
Marthe Bonamy
Łukasz Kowalik
Michał Pilipczuk
Arkadiusz Socała
机构
[1] Université de Bordeaux,CNRS, LaBRI
[2] University of Warsaw,Institute of Informatics
来源
Algorithmica | 2017年 / 79卷
关键词
Kernelization; Outbranching; Sparse graph; Bounded expansion; -minor-free graphs;
D O I
暂无
中图分类号
学科分类号
摘要
In the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching problems we are given a directed graph D with a designated root r and a nonnegative integer k. The question is whether there exists an outbranching rooted at r that has at least k leaves, or at least k internal vertices, respectively. Both these problems have been studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^2)$$\end{document} vertices are known on general graphs. In this work we show that k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching admits a kernel with O(k) vertices on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}-minor-free graphs, for any fixed family of graphs H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, whereas k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded expansion.
引用
收藏
页码:159 / 188
页数:29
相关论文
共 50 条
  • [21] A new generalization of kernels in digraphs
    Ramoul, Amina
    Blidia, Mostafa
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 673 - 684
  • [22] Kernels in a special class of digraphs
    GaleanaSanchez, H
    Li, XL
    DISCRETE MATHEMATICS, 1998, 178 (1-3) : 73 - 80
  • [23] Kernels in tensor product of digraphs II
    Lakshmi, R.
    Vidhyapriya, S.
    ARS COMBINATORIA, 2019, 143 : 173 - 191
  • [24] Disjoint quasi-kernels in digraphs
    Heard, Scott
    Huang, Jing
    JOURNAL OF GRAPH THEORY, 2008, 58 (03) : 251 - 260
  • [25] H-Kernels in Infinite Digraphs
    Galeana-Sanchez, Hortensia
    Sanchez-Lopez, Rocio
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 913 - 920
  • [26] Choices and kernels in bipolar valued digraphs
    Bisdorff, Raymond
    Pirlot, Marc
    Roubens, Marc
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 175 (01) : 155 - 170
  • [27] On the number of quasi-kernels in digraphs
    Gutin, G
    Koh, KM
    Tay, EG
    Yeo, A
    JOURNAL OF GRAPH THEORY, 2004, 46 (01) : 48 - 56
  • [28] Semikernels and (k,l)-kernels in digraphs
    Galeana-Sanchez, H
    Li, XL
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (02) : 340 - 346
  • [29] A note on quasi-kernels in digraphs
    Croitoru, Cosmina
    INFORMATION PROCESSING LETTERS, 2015, 115 (11) : 863 - 865
  • [30] Kernels in tensor product of digraphs I
    Lakshmi, R.
    Vidhyapriya, S.
    ARS COMBINATORIA, 2018, 141 : 149 - 156