Linear Kernels for Outbranching Problems in Sparse Digraphs

被引:0
|
作者
Marthe Bonamy
Łukasz Kowalik
Michał Pilipczuk
Arkadiusz Socała
机构
[1] Université de Bordeaux,CNRS, LaBRI
[2] University of Warsaw,Institute of Informatics
来源
Algorithmica | 2017年 / 79卷
关键词
Kernelization; Outbranching; Sparse graph; Bounded expansion; -minor-free graphs;
D O I
暂无
中图分类号
学科分类号
摘要
In the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching problems we are given a directed graph D with a designated root r and a nonnegative integer k. The question is whether there exists an outbranching rooted at r that has at least k leaves, or at least k internal vertices, respectively. Both these problems have been studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^2)$$\end{document} vertices are known on general graphs. In this work we show that k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching admits a kernel with O(k) vertices on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}-minor-free graphs, for any fixed family of graphs H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, whereas k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded expansion.
引用
收藏
页码:159 / 188
页数:29
相关论文
共 50 条
  • [11] Kernels in infinite digraphs
    Rojas-Monroy, Rocio
    Imelda Villarreal-Valdes, J.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2010, 7 (01) : 103 - 111
  • [12] KERNELS IN CIRCULANT DIGRAPHS
    Lakshmie, R.
    Vidtiyapriya, S.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (02) : 45 - 49
  • [13] Extensions and kernels in digraphs and in edge-coloured digraphs
    Instituto de Matemáticas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
    不详
    WSEAS Trans. Math., 2007, 2 (334-341):
  • [14] Explicit Linear Kernels for Packing Problems
    Valentin Garnero
    Christophe Paul
    Ignasi Sau
    Dimitrios M. Thilikos
    Algorithmica, 2019, 81 : 1615 - 1656
  • [15] Explicit Linear Kernels for Packing Problems
    Garnero, Valentin
    Paul, Christophe
    Sau, Ignasi
    Thilikos, Dimitrios M.
    ALGORITHMICA, 2019, 81 (04) : 1615 - 1656
  • [16] ON THE EXISTENCE OF K-KERNELS IN DIGRAPHS AND IN WEIGHTED DIGRAPHS
    Galeana-Sanchez, Hortensia
    Hernandez-Cruz, Cesar
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2010, 7 (02) : 201 - 215
  • [17] SVM with CUDA Accelerated Kernels for Big Sparse Problems
    Sopyla, Krzysztof
    Drozda, Pawel
    Gorecki, Przemyslaw
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2012, 7267 : 439 - 447
  • [18] Kernels in digraphs that are not kernel perfect
    Dyrkolbotn, Sjur
    Walicki, Michal
    DISCRETE MATHEMATICS, 2012, 312 (16) : 2498 - 2505
  • [19] Kernels and partial line digraphs
    Balbuena, C.
    Guevara, M.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1218 - 1220
  • [20] Kernels in Cartesian products of digraphs
    Lakshmi, R.
    Vidhyapriya, S.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 229 - 239