In the k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document}-Leaf Out-Branching and k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document}-Internal Out-Branching problems we are given a directed graph D with a designated root r and a nonnegative integer k. The question is whether there exists an outbranching rooted at r that has at least k leaves, or at least k internal vertices, respectively. Both these problems have been studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(k^2)$$\end{document} vertices are known on general graphs. In this work we show that k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document}-Leaf Out-Branching admits a kernel with O(k) vertices on H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {H}}}$$\end{document}-minor-free graphs, for any fixed family of graphs H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {H}}}$$\end{document}, whereas k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document}-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded expansion.
机构:
Vrije Univ Amsterdam, PARIS Res Program, Dept Sociol, Amsterdam, NetherlandsVrije Univ Amsterdam, PARIS Res Program, Dept Sociol, Amsterdam, Netherlands
Elzinga, Cees H.
Wang, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulster, Comp Sci Res Inst, Sch Comp & Math, Coleraine BT52 1SA, Londonderry, North IrelandVrije Univ Amsterdam, PARIS Res Program, Dept Sociol, Amsterdam, Netherlands
机构:
Univ London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, EnglandUniv London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, England
Gutin, G
Kloks, T
论文数: 0引用数: 0
h-index: 0
机构:Univ London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, England
Kloks, T
Lee, CM
论文数: 0引用数: 0
h-index: 0
机构:Univ London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, England
Lee, CM
Yeo, A
论文数: 0引用数: 0
h-index: 0
机构:Univ London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, England