Linear Kernels for Outbranching Problems in Sparse Digraphs

被引:0
|
作者
Marthe Bonamy
Łukasz Kowalik
Michał Pilipczuk
Arkadiusz Socała
机构
[1] Université de Bordeaux,CNRS, LaBRI
[2] University of Warsaw,Institute of Informatics
来源
Algorithmica | 2017年 / 79卷
关键词
Kernelization; Outbranching; Sparse graph; Bounded expansion; -minor-free graphs;
D O I
暂无
中图分类号
学科分类号
摘要
In the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching problems we are given a directed graph D with a designated root r and a nonnegative integer k. The question is whether there exists an outbranching rooted at r that has at least k leaves, or at least k internal vertices, respectively. Both these problems have been studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^2)$$\end{document} vertices are known on general graphs. In this work we show that k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Leaf Out-Branching admits a kernel with O(k) vertices on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}-minor-free graphs, for any fixed family of graphs H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, whereas k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Internal Out-Branching admits a kernel with O(k) vertices on any graph class of bounded expansion.
引用
收藏
页码:159 / 188
页数:29
相关论文
共 50 条
  • [1] Linear Kernels for Outbranching Problems in Sparse Digraphs
    Bonamy, Marthe
    Kowalik, Lukasz
    Pilipczuk, Michal
    Socala, Arkadiusz
    ALGORITHMICA, 2017, 79 (01) : 159 - 188
  • [2] Π-Kernels in Digraphs
    Galeana-Sanchez, Hortensia
    Jose Montellano-Ballesteros, Juan
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2207 - 2214
  • [3] On polynomial kernels for sparse integer linear programs
    Kratsch, Stefan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (05) : 758 - 766
  • [4] Kernels for acyclic digraphs
    Elzinga, Cees H.
    Wang, Hui
    PATTERN RECOGNITION LETTERS, 2012, 33 (16) : 2239 - 2244
  • [5] Kernels in planar digraphs
    Gutin, G
    Kloks, T
    Lee, CM
    Yeo, A
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 71 (02) : 174 - 184
  • [6] Fractional kernels in digraphs
    Aharoni, R
    Holzman, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 73 (01) : 1 - 6
  • [7] ON KERNELS AND SEMIKERNELS OF DIGRAPHS
    GALEANASANCHEZ, H
    NEUMANNLARA, V
    DISCRETE MATHEMATICS, 1984, 48 (01) : 67 - 76
  • [8] Kernels in pretransitive digraphs
    Galeana-Sánchez, H
    Rojas-Monroy, R
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 129 - 136
  • [9] Kernels in Weighted Digraphs
    Ron Aharoni
    Eli Berger
    Irina Gorelik
    Order, 2014, 31 : 35 - 43
  • [10] Kernels in Weighted Digraphs
    Aharoni, Ron
    Berger, Eli
    Gorelik, Irina
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (01): : 35 - 43