Sub-Riemannian Geodesics on the 3-D Sphere

被引:0
|
作者
Der-Chen Chang
Irina Markina
Alexander Vasil’ev
机构
[1] Georgetown University,Department of Mathematics
[2] University of Bergen,Department of Mathematics
来源
关键词
Sub-Riemannian geometry; geodesic; Hamiltonian system; Primary: 53C17; Secondary: 70H05;
D O I
暂无
中图分类号
学科分类号
摘要
The unit sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}}^3$$\end{document} can be identified with the unitary group SU(2). Under this identification the unit sphere can be considered as a non-commutative Lie group. The commutation relations for the vector fields of the corresponding Lie algebra define a 2-step sub-Riemannian manifold. We study sub-Riemannian geodesics on this sub-Riemannian manifold making use of the Hamiltonian formalism and solving the corresponding Hamiltonian system.
引用
收藏
页码:361 / 377
页数:16
相关论文
共 50 条
  • [1] Sub-Riemannian Geodesics on the 3-D Sphere
    Chang, Der-Chen
    Markina, Irina
    Vasil'ev, Alexander
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (02) : 361 - 377
  • [2] MODIFIED ACTION AND DIFFERENTIAL OPERATORS ON THE 3-D SUB-RIEMANNIAN SPHERE
    Chang, Der-Chen
    Markinai, Irina
    Vasil'ev, Alexander
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2010, 14 (04) : 439 - 473
  • [3] ON THE SHORTEST SUB-RIEMANNIAN GEODESICS
    PETROV, NN
    [J]. DIFFERENTIAL EQUATIONS, 1994, 30 (05) : 705 - 711
  • [4] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [5] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483
  • [6] Geodesics in the sub-Riemannian problem on the group SO(3)
    Beschastnyi, I. Yu.
    Sachkov, Yu. L.
    [J]. SBORNIK MATHEMATICS, 2016, 207 (07) : 915 - 941
  • [7] Regularity results for sub-Riemannian geodesics
    Monti, Roberto
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 549 - 582
  • [8] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    [J]. Geometric and Functional Analysis, 2020, 30 : 1139 - 1151
  • [9] Regularity results for sub-Riemannian geodesics
    Roberto Monti
    [J]. Calculus of Variations and Partial Differential Equations, 2014, 49 : 549 - 582
  • [10] Branching Geodesics in Sub-Riemannian Geometry
    Mietton, Thomas
    Rizzi, Luca
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1139 - 1151