Sub-Riemannian Geodesics on the 3-D Sphere

被引:0
|
作者
Der-Chen Chang
Irina Markina
Alexander Vasil’ev
机构
[1] Georgetown University,Department of Mathematics
[2] University of Bergen,Department of Mathematics
来源
关键词
Sub-Riemannian geometry; geodesic; Hamiltonian system; Primary: 53C17; Secondary: 70H05;
D O I
暂无
中图分类号
学科分类号
摘要
The unit sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}}^3$$\end{document} can be identified with the unitary group SU(2). Under this identification the unit sphere can be considered as a non-commutative Lie group. The commutation relations for the vector fields of the corresponding Lie algebra define a 2-step sub-Riemannian manifold. We study sub-Riemannian geodesics on this sub-Riemannian manifold making use of the Hamiltonian formalism and solving the corresponding Hamiltonian system.
引用
收藏
页码:361 / 377
页数:16
相关论文
共 50 条
  • [21] THE PROBLEM OF GEODESICS IN SINGULAR SUB-RIEMANNIAN GEOMETRY
    PELLETIER, F
    BOUCHE, LV
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (01): : 71 - 76
  • [22] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Arguillere, Sylvain
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2897 - 2938
  • [23] Helical CR structures and sub-Riemannian geodesics
    D'Angelo, John P.
    Tyson, Jeremy T.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (3-4) : 205 - 221
  • [24] Sub-Riemannian Geodesics on Nested Principal Bundles
    Godoy Molina, Mauricio
    Markina, Irina
    [J]. CONTROLO 2020, 2021, 695 : 82 - 92
  • [25] Stochastic sub-Riemannian geodesics on the Grushin distribution
    Calin, Ovidiu
    Udriste, Constantin
    Tevy, Ionel
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 37 - 49
  • [26] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Sylvain Arguillère
    [J]. The Journal of Geometric Analysis, 2020, 30 : 2897 - 2938
  • [27] Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane
    Yu. L. Sachkov
    [J]. Differential Equations, 2021, 57 : 1550 - 1554
  • [28] Variational aspects of the geodesics problem in sub-Riemannian geometry
    Piccione, P
    Tausk, DV
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (03) : 183 - 206
  • [29] Geodesics on a certain step 2 sub-Riemannian manifold
    Calin, O
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 22 (04) : 317 - 339
  • [30] An Extrinsic Approach to Sub-Riemannian Geodesics on the Orthogonal Group
    Huper, Knut
    Markina, Irina
    Leite, Fatima Silva
    [J]. CONTROLO 2020, 2021, 695 : 274 - 283