Energy Conservation in Two-dimensional Incompressible Ideal Fluids

被引:0
|
作者
A. Cheskidov
M. C. Lopes Filho
H. J. Nussenzveig Lopes
R. Shvydkoy
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics and Computer Science
[2] Universidade Federal do Rio de Janeiro,Instituto de Matemática
[3] Cidade Universitária – Ilha do Fundão,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This note addresses the issue of energy conservation for the 2D Euler system with an Lp-control on vorticity. We provide a direct argument, based on a mollification in physical space, to show that the energy of a weak solution is conserved if ω=∇×u∈L32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega = \nabla \times u \in L^{\frac{3}{2}}}$$\end{document}. An example of a 2D field in the class ω∈L32-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^{\frac{3}{2} - \epsilon}}$$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}, and u∈B3,∞1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in B^{1/3}_{3,\infty}}$$\end{document} (Onsager critical space, see Shvydkoy in Discr Contin Dyn Syst Ser S 3(3):473–496, 2010) is constructed with non-vanishing energy flux. This demonstrates sharpness of the kinematic argument, which does not differentiate between 2D and 3D, and requires Onsager’s regularity control on the solution. Next, we show that for physically realizable solutions there is a mechanism preventing the anomalous dissipation in 2D that does not require such a control. Namely, we prove that any solution to the Euler equations produced via a vanishing viscosity limit from the Navier–Stokes equations, with ω∈Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^p}$$\end{document}, for p >  1, conserves energy.
引用
收藏
页码:129 / 143
页数:14
相关论文
共 50 条
  • [31] Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force
    Glass, O
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (06): : 921 - 946
  • [32] Normalization of Killing vectors and energy conservation in two-dimensional gravity
    Cruz, J
    Fabbri, A
    Navarro-Salas, J
    PHYSICAL REVIEW D, 1999, 60 (10)
  • [33] Euler equations for incompressible ideal fluids
    Bardos, C.
    Titi, E. S.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (03) : 409 - 451
  • [34] Mixing and relaxation in ideal incompressible fluids
    Ziegler, HJ
    Wiechen, H
    PHYSICA SCRIPTA, 1998, T74 : 50 - 53
  • [35] Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations
    Kang, Lingping
    Deng, Xuemei
    Bie, Qunyi
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [36] Additivity of the two-dimensional Miller ideal
    Spinas, Otmar
    Thiele, Sonja
    ARCHIVE FOR MATHEMATICAL LOGIC, 2010, 49 (06): : 617 - 658
  • [37] THE DYNAMICS OF TWO-DIMENSIONAL IDEAL MHD
    FRISCH, U
    POUQUET, A
    SULEM, PL
    MENEGUZZI, M
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, : 191 - 216
  • [38] Additivity of the two-dimensional Miller ideal
    Otmar Spinas
    Sonja Thiele
    Archive for Mathematical Logic, 2010, 49 : 617 - 658
  • [39] AVERAGING OF INCOMPRESSIBLE FLOWS ON TWO-DIMENSIONAL SURFACES
    Dolgopyat, Dmitry
    Koralov, Leonid
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (02) : 427 - 449
  • [40] Pseudospectral reduction of incompressible two-dimensional turbulence
    Bowman, John C.
    Roberts, Malcolm
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (05) : 2008 - 2013