Energy Conservation in Two-dimensional Incompressible Ideal Fluids

被引:0
|
作者
A. Cheskidov
M. C. Lopes Filho
H. J. Nussenzveig Lopes
R. Shvydkoy
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics and Computer Science
[2] Universidade Federal do Rio de Janeiro,Instituto de Matemática
[3] Cidade Universitária – Ilha do Fundão,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This note addresses the issue of energy conservation for the 2D Euler system with an Lp-control on vorticity. We provide a direct argument, based on a mollification in physical space, to show that the energy of a weak solution is conserved if ω=∇×u∈L32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega = \nabla \times u \in L^{\frac{3}{2}}}$$\end{document}. An example of a 2D field in the class ω∈L32-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^{\frac{3}{2} - \epsilon}}$$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}, and u∈B3,∞1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in B^{1/3}_{3,\infty}}$$\end{document} (Onsager critical space, see Shvydkoy in Discr Contin Dyn Syst Ser S 3(3):473–496, 2010) is constructed with non-vanishing energy flux. This demonstrates sharpness of the kinematic argument, which does not differentiate between 2D and 3D, and requires Onsager’s regularity control on the solution. Next, we show that for physically realizable solutions there is a mechanism preventing the anomalous dissipation in 2D that does not require such a control. Namely, we prove that any solution to the Euler equations produced via a vanishing viscosity limit from the Navier–Stokes equations, with ω∈Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^p}$$\end{document}, for p >  1, conserves energy.
引用
收藏
页码:129 / 143
页数:14
相关论文
共 50 条
  • [41] CRITICAL PHENOMENA IN TWO-DIMENSIONAL INCOMPRESSIBLE FLOWS
    ONUKI, A
    KAWASAKI, K
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1980, (69): : 146 - 159
  • [42] Scalars convected by a two-dimensional incompressible flow
    Cordoba, D
    Fefferman, C
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (02) : 255 - 260
  • [43] Magnetization of an incompressible two-dimensional electron gas
    Wiegers, SAJ
    Specht, M
    Bibow, ED
    Lévy, LP
    Melinte, S
    Grivei, E
    Bayot, V
    Simmons, MY
    Ritchie, DA
    Shayegan, M
    Cavanna, A
    Etienne, B
    Martinez, G
    Wyder, P
    PHYSICA B-CONDENSED MATTER, 1998, 256 : 16 - 22
  • [44] Two dimensional incompressible ideal flow around a small obstacle
    Iftimie, D
    Lopes, MC
    Lopes, HJN
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (1-2) : 349 - 379
  • [45] Two Dimensional Incompressible Ideal Flow Around a Small Curve
    Lacave, C.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 690 - 731
  • [46] Confinement of vorticity in two dimensional ideal incompressible exterior flow
    Iftimie, D.
    Filho, M. C. Lopes
    Lopes, H. J. Nussenzveig
    QUARTERLY OF APPLIED MATHEMATICS, 2007, 65 (03) : 499 - 521
  • [47] Magnetization of two-dimensional magnetic fluids
    Kristof, T.
    Szalai, I.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (20)
  • [48] ENERGY-DISSIPATION THEOREM AND DETAILED JOSEPHSON EQUATION FOR IDEAL INCOMPRESSIBLE FLUIDS
    HUGGINS, ER
    PHYSICAL REVIEW A, 1970, 1 (02): : 332 - &
  • [49] Turbulence in two-dimensional plasmas and fluids
    Taylor, JB
    PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (5A) : 1 - 8
  • [50] Superposition approximation in two-dimensional fluids
    Guevara-Rodriguez, FD
    Medina-Noyola, M
    MOLECULAR PHYSICS, 1998, 95 (03) : 621 - 634