Energy Conservation in Two-dimensional Incompressible Ideal Fluids

被引:0
|
作者
A. Cheskidov
M. C. Lopes Filho
H. J. Nussenzveig Lopes
R. Shvydkoy
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics and Computer Science
[2] Universidade Federal do Rio de Janeiro,Instituto de Matemática
[3] Cidade Universitária – Ilha do Fundão,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This note addresses the issue of energy conservation for the 2D Euler system with an Lp-control on vorticity. We provide a direct argument, based on a mollification in physical space, to show that the energy of a weak solution is conserved if ω=∇×u∈L32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega = \nabla \times u \in L^{\frac{3}{2}}}$$\end{document}. An example of a 2D field in the class ω∈L32-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^{\frac{3}{2} - \epsilon}}$$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}, and u∈B3,∞1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in B^{1/3}_{3,\infty}}$$\end{document} (Onsager critical space, see Shvydkoy in Discr Contin Dyn Syst Ser S 3(3):473–496, 2010) is constructed with non-vanishing energy flux. This demonstrates sharpness of the kinematic argument, which does not differentiate between 2D and 3D, and requires Onsager’s regularity control on the solution. Next, we show that for physically realizable solutions there is a mechanism preventing the anomalous dissipation in 2D that does not require such a control. Namely, we prove that any solution to the Euler equations produced via a vanishing viscosity limit from the Navier–Stokes equations, with ω∈Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^p}$$\end{document}, for p >  1, conserves energy.
引用
收藏
页码:129 / 143
页数:14
相关论文
共 50 条
  • [21] CABARET scheme in velocity-pressure formulation for two-dimensional incompressible fluids
    Glotov, V. Yu.
    Goloviznin, V. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (06) : 721 - 735
  • [22] CABARET scheme in velocity-pressure formulation for two-dimensional incompressible fluids
    V. Yu. Glotov
    V. M. Goloviznin
    Computational Mathematics and Mathematical Physics, 2013, 53 : 721 - 735
  • [23] The interfacial energy of two-dimensional bidisperse cellular fluids
    W. Nowicki
    G. Nowicka
    The European Physical Journal E, 2004, 13 : 409 - 415
  • [24] The interfacial energy of two-dimensional bidisperse cellular fluids
    Nowicki, W
    Nowicka, G
    EUROPEAN PHYSICAL JOURNAL E, 2004, 13 (04): : 409 - 415
  • [25] Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids
    Eleuteri, Michela
    Rocca, Elisabetta
    Schimperna, Giulio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06): : 1431 - 1454
  • [26] AN EXACT GAUSSIAN SOLUTION FOR THE TWO-DIMENSIONAL IDEAL INCOMPRESSIBLE MAGNETO-HYDRODYNAMIC TURBULENCE
    DOI, M
    KAMBE, R
    IMAMURA, T
    TANIUTI, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 49 (03) : 1154 - 1156
  • [27] Stability Analysis of Two-Dimensional Ideal Flows With Applications to Viscous Fluids and Plasmas
    Arsenio, Diogo
    Houamed, Haroune
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (08) : 7032 - 7059
  • [28] Hydrodynamic theory of two-dimensional incompressible polar active fluids with quenched and annealed disorder
    Chen, Leiming
    Lee, Chiu Fan
    Maitra, Ananyo
    Toner, John
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [29] Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers
    Wang Li-Feng
    Ye Wen-Hua
    Li Ying-Jun
    CHINESE PHYSICS LETTERS, 2010, 27 (02)
  • [30] Regularity and Energy Conservation of the Nonhomogeneous Incompressible Ideal Magnetohydrodynamics Equations
    XIONG Jiajia
    BIE Qunyi
    ZHOU Yanping
    WuhanUniversityJournalofNaturalSciences, 2022, 27 (02) : 99 - 103