Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations

被引:7
|
作者
Kang, Lingping [1 ]
Deng, Xuemei [2 ,3 ]
Bie, Qunyi [2 ,3 ]
机构
[1] China Three Gorges Univ, Coll Sci, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Coll Sci, Yichang 443002, Peoples R China
[3] China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
关键词
D O I
10.1063/5.0042696
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the energy conservation for the nonhomogeneous incompressible ideal Hall-magnetohydrodynamic system. Three types of sufficient conditions are obtained. Precisely, the first one provides rho, u, P, and b with sufficient regularity to ensure the local energy conservation. The second one removes the regularity condition on P while requires L-p regularity on the spatial gradient of the density del rho and L-r regularity on rho (t). The last one removes the regularity condition on rho (t) while requires certain time regularity on the velocity field u. Our main strategy relies on commutator estimates in the work of Constantin et al. [Commun. Math. Phys. 165, 207-209 (1994)].
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Energy conservation for the nonhomogeneous incompressible Hall-MHD equations in a bounded domain
    Kang, Lingping
    Deng, Xuemei
    Zhou, Yanping
    RESULTS IN APPLIED MATHEMATICS, 2021, 12
  • [2] Energy conservation for the compressible ideal Hall-MHD equations
    Zhou, Yanping
    Deng, Xuemei
    Bie, Qunyi
    Kang, Lingping
    AIMS MATHEMATICS, 2022, 7 (09): : 17150 - 17165
  • [3] Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain
    Wang, Xun
    Bie, Qunyi
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (01): : 17 - 36
  • [4] Global energy conservation for distributional solutions to incompressible Hall-MHD equations without resistivity
    Wu, Fan
    FILOMAT, 2023, 37 (28) : 9741 - 9751
  • [5] Regularity and Energy Conservation of the Nonhomogeneous Incompressible Ideal Magnetohydrodynamics Equations
    XIONG Jiajia
    BIE Qunyi
    ZHOU Yanping
    WuhanUniversityJournalofNaturalSciences, 2022, 27 (02) : 99 - 103
  • [6] Singularity formation for the incompressible Hall-MHD equations without resistivity
    Chae, Dongho
    Weng, Shangkun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04): : 1009 - 1022
  • [7] Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations
    Liu, Pan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (01)
  • [8] Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations
    Pan Liu
    Banach Journal of Mathematical Analysis, 2023, 17
  • [9] SOLITARY WAVES IN IDEAL HALL-MHD
    ALMAGUER, JA
    REVISTA MEXICANA DE FISICA, 1994, 40 (01) : 55 - 70
  • [10] Regularity criteria for the incompressible Hall-MHD system
    Fan, Jishan
    Fukumoto, Yasuhide
    Nakamura, Gen
    Zhou, Yong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (11): : 1156 - 1160