Energy Conservation in Two-dimensional Incompressible Ideal Fluids

被引:0
|
作者
A. Cheskidov
M. C. Lopes Filho
H. J. Nussenzveig Lopes
R. Shvydkoy
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics and Computer Science
[2] Universidade Federal do Rio de Janeiro,Instituto de Matemática
[3] Cidade Universitária – Ilha do Fundão,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This note addresses the issue of energy conservation for the 2D Euler system with an Lp-control on vorticity. We provide a direct argument, based on a mollification in physical space, to show that the energy of a weak solution is conserved if ω=∇×u∈L32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega = \nabla \times u \in L^{\frac{3}{2}}}$$\end{document}. An example of a 2D field in the class ω∈L32-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^{\frac{3}{2} - \epsilon}}$$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}, and u∈B3,∞1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in B^{1/3}_{3,\infty}}$$\end{document} (Onsager critical space, see Shvydkoy in Discr Contin Dyn Syst Ser S 3(3):473–496, 2010) is constructed with non-vanishing energy flux. This demonstrates sharpness of the kinematic argument, which does not differentiate between 2D and 3D, and requires Onsager’s regularity control on the solution. Next, we show that for physically realizable solutions there is a mechanism preventing the anomalous dissipation in 2D that does not require such a control. Namely, we prove that any solution to the Euler equations produced via a vanishing viscosity limit from the Navier–Stokes equations, with ω∈Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in L^p}$$\end{document}, for p >  1, conserves energy.
引用
收藏
页码:129 / 143
页数:14
相关论文
共 50 条
  • [1] Energy Conservation in Two-dimensional Incompressible Ideal Fluids
    Cheskidov, A.
    Lopes Filho, M. C.
    Nussenzveig Lopes, H. J.
    Shvydkoy, R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (01) : 129 - 143
  • [2] On the conservation of energy in two-dimensional incompressible flows
    Lanthaler, S.
    Mishra, S.
    Pares-Pulido, C.
    NONLINEARITY, 2021, 34 (02) : 1084 - 1135
  • [3] An initial value problem for two-dimensional ideal incompressible fluids with continuous vorticity
    Cozzi, Elaine
    MATHEMATICAL RESEARCH LETTERS, 2007, 14 (04) : 573 - 587
  • [4] Energy balance for forced two-dimensional incompressible ideal fluid flow
    Lopes Filho, M. C.
    Nussenzveig Lopes, H. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2219):
  • [5] Odd viscosity in two-dimensional incompressible fluids
    Ganeshan, Sriram
    Abanov, Alexander G.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (09):
  • [6] Dynamics of the two-dimensional ideal incompressible fluid and Casimirs
    V. P. Dymnikov
    Izvestiya, Atmospheric and Oceanic Physics, 2016, 52 : 348 - 352
  • [7] Dynamics of the Two-dimensional Ideal Incompressible Fluid and Casimirs
    Dymnikov, V. P.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2016, 52 (04) : 348 - 352
  • [9] Odd surface waves in two-dimensional incompressible fluids
    Abanov, Alexander G.
    Can, Tankut
    Ganeshan, Sriram
    SCIPOST PHYSICS, 2018, 5 (01):
  • [10] UNIQUENESS FOR TWO-DIMENSIONAL INCOMPRESSIBLE IDEAL FLOW ON SINGULAR DOMAINS
    Lacave, Christophe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) : 1615 - 1664