Odd surface waves in two-dimensional incompressible fluids
被引:50
|
作者:
Abanov, Alexander G.
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USASUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
Abanov, Alexander G.
[1
,2
]
Can, Tankut
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, Grad Ctr, Initiat Theoret Sci, New York, NY 10012 USASUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
Can, Tankut
[4
]
Ganeshan, Sriram
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
CUNY City Coll, Dept Phys, New York, NY 10031 USASUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
Ganeshan, Sriram
[1
,3
]
机构:
[1] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[4] CUNY, Grad Ctr, Initiat Theoret Sci, New York, NY 10012 USA
We consider free surface dynamics of a two-dimensional incompressible fluid with odd viscosity. The odd viscosity is a peculiar part of the viscosity tensor which does not result in dissipation and is allowed when parity symmetry is broken. For the case of incompressible fluids, the odd viscosity manifests itself through the free surface (no stress) boundary conditions. We first find the free surface wave solutions of hydrodynamics in the linear approximation and study the dispersion of such waves. As expected, the surface waves are chiral and even exist in the absence of gravity and vanishing shear viscosity. In this limit, we derive effective nonlinear Hamiltonian equations for the surface dynamics, generalizing the linear solutions to the weakly nonlinear case. Within the small surface angle approximation, the equation of motion leads to a new class of nonlinear chiral dynamics governed by what we dub the chiral Burgers equation. The chiral Burgers equation is identical to the complex Burgers equation with imaginary viscosity and an additional analyticity requirement that enforces chirality. We present several exact solutions of the chiral Burgers equation. For generic multiple pole initial conditions, the system evolves to the formation of singularities in a finite time similar to the case of an ideal fluid without odd viscosity. We also obtain a periodic solution to the chiral Burgers corresponding to the non-linear generalization of small amplitude linear waves.
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USA
Cheskidov, A.
Lopes Filho, M. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Ilha Fundao, Cidade Univ,Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USA
Lopes Filho, M. C.
Nussenzveig Lopes, H. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Ilha Fundao, Cidade Univ,Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USA
Nussenzveig Lopes, H. J.
Shvydkoy, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USA