Global series for height 1 multiple zeta functions

被引:0
|
作者
Paul Thomas Young
机构
[1] College of Charleston,Department of Mathematics
来源
关键词
Multiple zeta functions; Ramanujan summation; Stieltjes constants; Multiple harmonic star sums; 11M32; 11M06; 40G99; 11B68;
D O I
暂无
中图分类号
学科分类号
摘要
We use everywhere-convergent series for the height 1 multiple zeta functions ζ(s,1,…,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s,1,\ldots ,1)$$\end{document} to determine the singular parts of their Laurent series at each of their poles, and give an expression for each first “Stieltjes constant” (i.e., the linear Laurent coefficient) as series involving the Bernoulli numbers of the second kind, generalizing the classical Mascheroni series for Euler’s constant γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}. The first Stieltjes constants at s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} and at s=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0$$\end{document} are then interpreted in terms of the Ramanujan summation of multiple harmonic star sums ζ⋆(1,…,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta ^\star (1,\ldots ,1)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Multiple zeta values and zeta-functions of root systems
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (06) : 103 - 107
  • [32] Analytic continuation of multiple zeta functions
    Zhao, JQ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) : 1275 - 1283
  • [33] SYMMETRIC FUNCTIONS AND MULTIPLE ZETA VALUES
    Chu, Wenchang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (03) : 426 - 437
  • [34] Cyclic relation for multiple zeta functions
    Murahara, Hideki
    Onozuka, Tomokazu
    RESEARCH IN NUMBER THEORY, 2022, 8 (03)
  • [35] Cyclic relation for multiple zeta functions
    Hideki Murahara
    Tomokazu Onozuka
    Research in Number Theory, 2022, 8
  • [36] Multiple finite Riemann zeta functions
    Kimoto, K
    Kurokawa, N
    Matsumoto, S
    Wakayama, M
    ACTA ARITHMETICA, 2005, 116 (02) : 173 - 187
  • [37] Interpolant of truncated multiple zeta functions
    Ihara, Kentaro
    Nakamura, Yayoi
    Yamamoto, Shuji
    RAMANUJAN JOURNAL, 2025, 67 (01):
  • [38] MULTIPLE ZEROS OF DEDEKIND ZETA FUNCTIONS
    Browkin, Jerzy
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (02) : 383 - 390
  • [39] On Barnes' multiple zeta and gamma functions
    Ruijsenaars, SNM
    ADVANCES IN MATHEMATICS, 2000, 156 (01) : 107 - 132
  • [40] Products of weighted multiple zeta functions
    Viswanadham, G. K.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 147 : 26 - 39