Products of weighted multiple zeta functions

被引:0
|
作者
Viswanadham, G. K. [1 ]
机构
[1] IISER Berhampur, Dept Math, Berhampur 760010, Orissa, India
来源
关键词
Multiple zeta functions; Stuffle relation; Shuffle relation; ANALYTIC CONTINUATION; VALUES;
D O I
10.1016/j.bulsci.2018.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the multiple zeta functions satisfy the stuffle relation. Recently it is proved (see J. Mehta et al. (2016) [3]) that a weighted variant of the multiple zeta function satisfies the shuffle relation. In this article we characterize all the weighted multiple zeta functions which satisfy the stuffle relation (respectively shuffle relation). (C) 2018 Elsevier Masson SAS, All rights reserved.
引用
收藏
页码:26 / 39
页数:14
相关论文
共 50 条
  • [1] An identity involving weighted and desingularized multiple zeta functions
    Sahoo, Dilip K.
    Viswanadham, G. K.
    [J]. ACTA ARITHMETICA, 2022, 202 (02) : 195 - 202
  • [2] Weighted sum formulas of multiple Hurwitz zeta functions
    Hashimoto, Shuta
    Nakamura, Takashi
    Watanabe, Tatsuki
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [3] Bartholdi zeta and L-functions of weighted digraphs, their coverings and products
    Choe, Young-Bin
    Kwak, Jin Ho
    Park, Yong Sung
    Sato, Iwao
    [J]. ADVANCES IN MATHEMATICS, 2007, 213 (02) : 865 - 886
  • [4] Weighted zeta functions of graphs
    Mizuno, H
    Sato, I
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (02) : 169 - 183
  • [5] Weighted zeta functions of digraphs
    Mizuno, H
    Sato, I
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 : 35 - 48
  • [6] On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions
    Nakasuji, Maki
    Phuksuwan, Ouamporn
    Yamasaki, Yoshinori
    [J]. ADVANCES IN MATHEMATICS, 2018, 333 : 570 - 619
  • [7] Weighted zeta functions of graph coverings
    Sato, Iwao
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [8] Analytic properties of multiple zeta functions and certain weighted variants, an elementary approach
    Mehta, Jay
    Saha, Biswajyoti
    Viswanadham, G. K.
    [J]. JOURNAL OF NUMBER THEORY, 2016, 168 : 487 - 508
  • [9] Weighted Bartholdi zeta functions of graphs
    Sato, I
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (05) : 644 - 657
  • [10] A continuous version of multiple zeta functions and multiple zeta values
    Li, Jiangtao
    [J]. COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 697 - 713