Global series for height 1 multiple zeta functions

被引:0
|
作者
Paul Thomas Young
机构
[1] College of Charleston,Department of Mathematics
来源
关键词
Multiple zeta functions; Ramanujan summation; Stieltjes constants; Multiple harmonic star sums; 11M32; 11M06; 40G99; 11B68;
D O I
暂无
中图分类号
学科分类号
摘要
We use everywhere-convergent series for the height 1 multiple zeta functions ζ(s,1,…,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s,1,\ldots ,1)$$\end{document} to determine the singular parts of their Laurent series at each of their poles, and give an expression for each first “Stieltjes constant” (i.e., the linear Laurent coefficient) as series involving the Bernoulli numbers of the second kind, generalizing the classical Mascheroni series for Euler’s constant γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}. The first Stieltjes constants at s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} and at s=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0$$\end{document} are then interpreted in terms of the Ramanujan summation of multiple harmonic star sums ζ⋆(1,…,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta ^\star (1,\ldots ,1)$$\end{document}.
引用
收藏
相关论文
共 50 条