Multiple zeta values and zeta-functions of root systems

被引:4
|
作者
Komori, Yasushi [1 ]
Matsumoto, Kohji [2 ]
Tsumura, Hirofumi [3 ]
机构
[1] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Aichi 4648602, Japan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Tokyo 1920397, Japan
关键词
Multiple zeta-values; root systems; witten zeta-functions; BERNOULLI POLYNOMIALS;
D O I
10.3792/pjaa.87.103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose the viewpoint that the r-ple zeta-function of Euler-Zagier type can be regarded as a specialization of the zeta-function associated with the root system of C-r type. From this viewpoint, we can see that Zagier's well-known formula for multiple zeta values (MZVs) coincides with Witten's volume formula associated with a sub-root system of C-r type. Based on this observation, we generalize Zagier's formula and also give analogous results which correspond to a sub-root system of B-r type. We announce those results as well as some relevant results for partial multiple zeta values.
引用
收藏
页码:103 / 107
页数:5
相关论文
共 50 条
  • [1] A STUDY ON MULTIPLE ZETA VALUES FROM THE VIEWPOINT OF ZETA-FUNCTIONS OF ROOT SYSTEMS
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (01) : 43 - 76
  • [2] Shuffle products for multiple zeta values and partial fraction decompositions of zeta-functions of root systems
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (3-4) : 993 - 1011
  • [3] Shuffle products for multiple zeta values and partial fraction decompositions of zeta-functions of root systems
    Yasushi Komori
    Kohji Matsumoto
    Hirofumi Tsumura
    [J]. Mathematische Zeitschrift, 2011, 268 : 993 - 1011
  • [4] Expressions of Schur multiple zeta-functions of anti-hook type by zeta-functions of root systems
    Matsumoto, Kohji
    Nakasuji, Maki
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 345 - 377
  • [5] Some problems on mean values and the universality of zeta and multiple zeta-functions
    Matsumoto, Kohji
    [J]. ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2002, : 195 - 199
  • [6] FUNCTIONAL RELATIONS FOR ZETA-FUNCTIONS OF ROOT SYSTEMS
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    [J]. NUMBER THEORY: DREAMING IN DREAMS, 2010, 6 : 135 - +
  • [7] NEGATIVE INTEGRAL VALUES OF ZETA-FUNCTIONS AND P-ADIC ZETA-FUNCTIONS
    CASSOUNOGUES, P
    [J]. INVENTIONES MATHEMATICAE, 1979, 51 (01) : 29 - 59
  • [8] ADDENDUM TO SPECIAL VALUES OF ZETA-FUNCTIONS
    STURM, J
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (04) : 781 - 783
  • [9] MOTIVIC COHOMOLOGY AND VALUES OF ZETA-FUNCTIONS
    MILNE, JS
    [J]. COMPOSITIO MATHEMATICA, 1988, 68 (01) : 59 - 102
  • [10] ZETA-FUNCTIONS OF ROOT SYSTEMS AND POINCARE POLYNOMIALS OF WEYL GROUPS
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (01) : 87 - 126