Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method

被引:0
|
作者
Bing Xu
Li-Xin Xia
机构
[1] Anhui Science and Technology University,School of Electrical and Electronic Engineering
[2] Hunan Normal University,Department of Physics and Synergistic Innovation Center for Quantum Effects and Applications
[3] Kashgar University,Department of Physics
来源
关键词
Cosmology; Cosmic acceleration; Deceleration parameter;
D O I
暂无
中图分类号
学科分类号
摘要
In order to answer the question of whether the current acceleration of the cosmic expansion is slowing down or not, in this paper we use a non-parametric Bayesian method to reconstruct the evolution of the deceleration parameter q(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(z)$\end{document} from the latest observations including the type Ia supernova data, the baryon acoustic oscillation data, the Planck cosmic microwave background data, the Hubble data as well as the local value of Hubble constant. We find that all the data support a currently increasing cosmic acceleration, a spatially flat universe is favored and the effects of the spatial curvature on the reconstructed result are negligible. Moreover, the evolution of q(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(z)$\end{document} displays an oscillatory behavior, which is preferred by observations at the 3.2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.2\sigma $\end{document} confidence level as compared with that in the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document}CDM. But, the reconstructed q(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(z)$\end{document} is punished by the Bayesian information criteria due to more many model parameters.
引用
收藏
相关论文
共 50 条
  • [1] Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method
    Xu, Bing
    Xia, Li-Xin
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (02)
  • [2] Bayesian non-parametric approaches to reconstructing oscillatory systems and the Nyquist limit
    Zurauskiene, Justina
    Kirk, Paul
    Thorne, Thomas
    Stumpf, Michael P. H.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 407 : 33 - 42
  • [3] Purchase Prediction Based on a Non-parametric Bayesian Method
    Liu, Yezheng
    Zhu, Tingting
    Jiang, Yuanchun
    [J]. PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2019, : 1314 - 1322
  • [4] Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method
    Koskela, Jere
    Jenkins, Paul A.
    Spano, Dario
    [J]. BERNOULLI, 2018, 24 (03) : 2122 - 2153
  • [5] Revisiting a non-parametric reconstruction of the deceleration parameter from combined background and the growth rate data
    Mukherjee, Purba
    Banerjee, Narayan
    [J]. PHYSICS OF THE DARK UNIVERSE, 2022, 36
  • [6] A Bayesian non-parametric method to detect clusters in Planck data
    Diego, JM
    Vielva, P
    Martínez-González, E
    Silk, J
    Sanz, JL
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 336 (04) : 1351 - 1363
  • [7] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    [J]. INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [8] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112
  • [9] A non-parametric Bayesian change-point method for recurrent events
    Li, Qing
    Guo, Feng
    Kim, Inyoung
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (16) : 2929 - 2948
  • [10] Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
    Tong, Xin
    Ke, Zijun
    [J]. FRONTIERS IN PSYCHOLOGY, 2021, 12