Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method

被引:3
|
作者
Koskela, Jere [1 ]
Jenkins, Paul A. [2 ,3 ]
Spano, Dario [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Dirichlet mixture model prior; Lambda-coalescent; non-parametric inference; posterior consistency; pseudo-marginal MCMC; DNA VARIATION; POPULATION; GENEALOGY; DISTRIBUTIONS; FUNCTIONALS; FINITE; AGE;
D O I
10.3150/16-BEJ923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate Bayesian non-parametric inference of the Lambda-measure of Lambda-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set of size n is an element of N is constant across Lambda-measures whose leading n - 2 moments agree, and focus on inferring truncated sequences of moments. We provide a large class of functionals which can be extremised using finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal Metropolis-Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation study.
引用
收藏
页码:2122 / 2153
页数:32
相关论文
共 50 条
  • [1] Non-parametric Bayesian inference on bivariate extremes
    Guillotte, Simon
    Perron, Francois
    Segers, Johan
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 377 - 406
  • [2] Non-parametric Bayesian inference of strategies in repeated games
    Kleiman-Weiner, Max
    Tenenbaum, Joshua B.
    Zhou, Penghui
    [J]. ECONOMETRICS JOURNAL, 2018, 21 (03): : 298 - 315
  • [3] Bayesian inference for longitudinal data with non-parametric treatment effects
    Mueller, Peter
    Quintana, Fernando A.
    Rosner, Gary L.
    Maitland, Michael L.
    [J]. BIOSTATISTICS, 2014, 15 (02) : 341 - 352
  • [4] Implementation of Bayesian non-parametric inference based on beta processes
    Damien, P
    Laud, PW
    Smith, AFM
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (01) : 27 - 36
  • [5] Non-parametric bayesian inference for inhomogeneous markov point processes
    Berthelsen, Kasper K.
    Moller, Jesper
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (03) : 257 - 272
  • [6] Bayesian non-parametric inference for manifold based MoCap representation
    Natola, Fabrizio
    Ntouskos, Valsamis
    Sanzari, Marta
    Pirri, Fiora
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4606 - 4614
  • [7] Purchase Prediction Based on a Non-parametric Bayesian Method
    Liu, Yezheng
    Zhu, Tingting
    Jiang, Yuanchun
    [J]. PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2019, : 1314 - 1322
  • [8] Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model
    Khoufache, Reda
    Belhadj, Anisse
    Azzag, Hanene
    Lebbah, Mustapha
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PAKDD 2024, 2024, 14645 : 271 - 283
  • [9] hiHMM: Bayesian non-parametric joint inference of chromatin state maps
    Sohn, Kyung-Ah
    Ho, Joshua W. K.
    Djordjevic, Djordje
    Jeong, Hyun-hwan
    Park, Peter J.
    Kim, Ju Han
    [J]. BIOINFORMATICS, 2015, 31 (13) : 2066 - 2074
  • [10] Non-parametric bayesian inference for integrals with respect to an unknown finite measure
    Erhardsson, Torkel
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) : 369 - 384