Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method

被引:3
|
作者
Koskela, Jere [1 ]
Jenkins, Paul A. [2 ,3 ]
Spano, Dario [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Dirichlet mixture model prior; Lambda-coalescent; non-parametric inference; posterior consistency; pseudo-marginal MCMC; DNA VARIATION; POPULATION; GENEALOGY; DISTRIBUTIONS; FUNCTIONALS; FINITE; AGE;
D O I
10.3150/16-BEJ923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate Bayesian non-parametric inference of the Lambda-measure of Lambda-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set of size n is an element of N is constant across Lambda-measures whose leading n - 2 moments agree, and focus on inferring truncated sequences of moments. We provide a large class of functionals which can be extremised using finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal Metropolis-Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation study.
引用
收藏
页码:2122 / 2153
页数:32
相关论文
共 50 条
  • [41] Smoothness in Bayesian Non-parametric Regression with Wavelets
    Marco Di Zio
    Arnoldo Frigessi
    [J]. Methodology And Computing In Applied Probability, 1999, 1 (4) : 391 - 405
  • [42] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199
  • [43] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305
  • [44] BAYESIAN NON-PARAMETRIC SIMULATION OF HAZARD FUNCTIONS
    Belyi, Dmitriy
    Popova, Elmira
    Morton, David
    Damien, Paul
    [J]. PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 467 - +
  • [45] A BAYESIAN NON-PARAMETRIC ESTIMATE FOR MULTIVARIATE REGRESSION
    POLI, I
    [J]. JOURNAL OF ECONOMETRICS, 1985, 28 (02) : 171 - 182
  • [46] A non-parametric Bayesian model for bounded data
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    [J]. PATTERN RECOGNITION, 2015, 48 (06) : 2084 - 2095
  • [47] Non-Parametric Bayesian Constrained Local Models
    Martins, Pedro
    Caseiro, Rui
    Batista, Jorge
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1797 - 1804
  • [48] Non-parametric Bayesian super-resolution
    Lane, R. O.
    [J]. IET RADAR SONAR AND NAVIGATION, 2010, 4 (04): : 639 - 648
  • [49] On Parametric (and Non-Parametric) Variation
    Smith, Neil
    Law, Ann
    [J]. BIOLINGUISTICS, 2009, 3 (04): : 332 - 343
  • [50] A Bayesian non-parametric stochastic frontier model
    Assaf, A. George
    Tsionas, Mike
    Kock, Florian
    Josiassen, Alexander
    [J]. ANNALS OF TOURISM RESEARCH, 2021, 87