Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method

被引:3
|
作者
Koskela, Jere [1 ]
Jenkins, Paul A. [2 ,3 ]
Spano, Dario [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Dirichlet mixture model prior; Lambda-coalescent; non-parametric inference; posterior consistency; pseudo-marginal MCMC; DNA VARIATION; POPULATION; GENEALOGY; DISTRIBUTIONS; FUNCTIONALS; FINITE; AGE;
D O I
10.3150/16-BEJ923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate Bayesian non-parametric inference of the Lambda-measure of Lambda-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set of size n is an element of N is constant across Lambda-measures whose leading n - 2 moments agree, and focus on inferring truncated sequences of moments. We provide a large class of functionals which can be extremised using finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal Metropolis-Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation study.
引用
收藏
页码:2122 / 2153
页数:32
相关论文
共 50 条
  • [21] Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method
    Xu, Bing
    Xia, Li-Xin
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (02)
  • [22] Non-parametric Bayesian inference for continuous density hidden Markov mixture model
    Bathaee, Najmeh
    Sheikhzadeh, Hamid
    [J]. STATISTICAL METHODOLOGY, 2016, 33 : 256 - 275
  • [23] NON-PARAMETRIC BAYESIAN INFERENCE FOR CHANGE POINT DETECTION IN NEURAL SPIKE TRAINS
    Alt, Bastian
    Messer, Michael
    Roeper, Jochen
    Schneider, Gaby
    Koeppl, Heinz
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 258 - 262
  • [24] A Bayesian non-parametric method to detect clusters in Planck data
    Diego, JM
    Vielva, P
    Martínez-González, E
    Silk, J
    Sanz, JL
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 336 (04) : 1351 - 1363
  • [25] Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes
    Xu, Xiaoguang
    Kypraios, Theodore
    O'Neill, Philip D.
    [J]. BIOSTATISTICS, 2016, 17 (04) : 619 - 633
  • [26] Bayesian Non-Parametric Inference for Multivariate Peaks-over-Threshold Models
    Trubey, Peter
    Sanso, Bruno
    [J]. ENTROPY, 2024, 26 (04)
  • [27] On the consistency of non-parametric estimation of the spatial spectrum
    Ephraty, A
    Tabrikian, J
    Messer, H
    [J]. NINETEENTH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, 1996, : 247 - 250
  • [28] Comparison of parametric and non-parametric Bayesian inference for fusing sensory estimates in physiological time-series analysis
    Zhu, Tingting
    Javed, Hamza
    Clifton, David A.
    [J]. HEALTHCARE TECHNOLOGY LETTERS, 2021, 8 (02) : 25 - 30
  • [29] Non-parametric inference for balanced randomization designs
    Rukhin, Andrew L.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 967 - 984
  • [30] NON-PARAMETRIC STATISTICAL INFERENCE FOR THE SURVIVAL EXPERIMENTS
    Ramadurai, M.
    Basha, M. A. Ghouse
    [J]. JP JOURNAL OF BIOSTATISTICS, 2021, 18 (03) : 379 - 394