Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling

被引:0
|
作者
Tong, Xin [1 ]
Ke, Zijun [2 ]
机构
[1] Univ Virginia, Dept Psychol, Gilmer Hall, Charlottesville, VA 22903 USA
[2] Sun Yat Sen Univ, Dept Psychol, Guangzhou, Peoples R China
来源
FRONTIERS IN PSYCHOLOGY | 2021年 / 12卷
基金
美国国家科学基金会;
关键词
non-parametric Bayesian; robust method; growth curve modeling; Dirichlet process mixture; prior; precision parameter; STRUCTURAL EQUATION MODELS; TEST STATISTICS; DISTRIBUTIONS; DIAGNOSTICS; NONNORMALITY; CONVERGENCE; SELECTION; OUTLIERS; ERROR;
D O I
10.3389/fpsyg.2021.624588
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Bayesian non-parametric (BNP) modeling has been developed and proven to be a powerful tool to analyze messy data with complex structures. Despite the increasing popularity of BNP modeling, it also faces challenges. One challenge is the estimation of the precision parameter in the Dirichlet process mixtures. In this study, we focus on a BNP growth curve model and investigate how non-informative prior, weakly informative prior, accurate informative prior, and inaccurate informative prior affect the model convergence, parameter estimation, and computation time. A simulation study has been conducted. We conclude that the non-informative prior for the precision parameter is less preferred because it yields a much lower convergence rate, and growth curve parameter estimates are not sensitive to informative priors.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bayesian rendering with non-parametric multiscale prior model
    Mignotte, M
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 247 - 250
  • [2] A Non-parametric Bayesian Network Prior of Human Pose
    Lehrmann, Andreas M.
    Gehler, Peter V.
    Nowozin, Sebastian
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1281 - 1288
  • [3] Minimally informative prior distributions for non-parametric Bayesian analysis
    Bush, Christopher A.
    Lee, Juhee
    MacEachern, Steven N.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 253 - 268
  • [4] Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method
    Bing Xu
    Li-Xin Xia
    [J]. Astrophysics and Space Science, 2020, 365
  • [5] Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method
    Xu, Bing
    Xia, Li-Xin
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (02)
  • [6] Non-parametric news impact curve: a variational approach
    Matthieu Garcin
    Clément Goulet
    [J]. Soft Computing, 2020, 24 : 13797 - 13812
  • [7] Non-parametric news impact curve: a variational approach
    Garcin, Matthieu
    Goulet, Clement
    [J]. SOFT COMPUTING, 2020, 24 (18) : 13797 - 13812
  • [8] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199
  • [9] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatarinova, Tatiana
    Neely, Michael
    Bartroff, Jay
    van Guilder, Michael
    Yamada, Walter
    Bayard, David
    Jelliffe, Roger
    Leary, Robert
    Chubatiuk, Alyona
    Schumitzky, Alan
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (02) : 189 - 199
  • [10] Bayesian Non-parametric Image Segmentation with Markov Random Field Prior
    Amid, Ehsan
    [J]. IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 76 - 84