An unsupervised and non-parametric bayesian classifier

被引:16
|
作者
Zribi, M
Ghorbel, F
机构
[1] Univ Littoral Cote Opale, UPRES 2600, LASL, F-62228 Calais, France
[2] Ctr Edutes & Rech Telecommun, DER, Grp Rech Images & Formes Tunise ENSI, Tunis 1002, Tunisia
关键词
unsupervised non-parametric Bayesian classifier; orthogonal probability density function estimation; expectation-maximization; smoothing parameter; classification error probability;
D O I
10.1016/S0167-8655(02)00193-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose here an unsupervised Bayesian classifier based on a non-parametric expectation-maximization algorithm. The non-parametric aspect comes from the use of the orthogonal probability density function (pdf) estimation, which is reduced to the estimation of the first Fourier coefficients of the pdf with respect to a given orthogonal basis. So, the mixture identification step based on the maximization of the likelihood can be realized without hypothesis on the conditional pdf's distribution. This means that for the unsupervised image segmentation example we do not need any assumption for the gray level image pixels distribution. The generalization to the multivariate case can be obtained by considering the multidimensional orthogonal function basis. In this paper, we give some simulation results for the determination of the smoothing parameter and to compute the error of classification. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 50 条
  • [1] Non-parametric and unsupervised Bayesian classification with Bootstrap sampling
    Zribi, M
    [J]. IMAGE AND VISION COMPUTING, 2004, 22 (01) : 1 - 8
  • [2] Unsupervised Clustering of Utterances using Non-parametric Bayesian Methods
    Higashinaka, Ryuichiro
    Kawamae, Noriaki
    Sadamitsu, Kugatsu
    Minami, Yasuhiro
    Meguro, Toyomi
    Dohsaka, Kohji
    Inagaki, Hirohito
    [J]. 12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2092 - 2095
  • [3] Unsupervised and non-parametric Bayesian classifier for HOS speaker independent HMM based isolated word speech recognition systems
    Zribi, M
    Saoudi, S
    Ghorbel, F
    [J]. 8TH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1996, : 190 - 193
  • [4] Parametric and non-parametric unsupervised cluster analysis
    Roberts, SJ
    [J]. PATTERN RECOGNITION, 1997, 30 (02) : 261 - 272
  • [5] A Bayesian skin/non-skin color classifier using non-parametric density estimation
    Chai, D
    Phung, SL
    Bouzerdoum, A
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II: COMMUNICATIONS-MULTIMEDIA SYSTEMS & APPLICATIONS, 2003, : 464 - 467
  • [6] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    [J]. INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [7] A 'non-parametric' version of the naive Bayes classifier
    Soria, Daniele
    Garibaldi, Jonathan M.
    Ambrogi, Federico
    Biganzoli, Elia M.
    Ellis, Ian O.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2011, 24 (06) : 775 - 784
  • [8] Unsupervised non-parametric kernel learning algorithm
    Liu, Bing
    Xia, Shi-Xiong
    Zhou, Yong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 44 : 1 - 9
  • [9] VERSATILE BAYESIAN CLASSIFIER FOR MOVING OBJECT DETECTION BY NON-PARAMETRIC BACKGROUND-FOREGROUND MODELING
    Cuevas, Carlos
    Mohedano, Raul
    Garcia, Narciso
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 313 - 316
  • [10] UNSUPERVISED NON-PARAMETRIC BAYESIAN MODELING OF NON-STATIONARY NOISE FOR MODEL-BASED NOISE SUPPRESSION
    Fujimoto, Masakiyo
    Kubo, Yotaro
    Nakatani, Tomohiro
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,