Unsupervised Clustering of Utterances using Non-parametric Bayesian Methods

被引:0
|
作者
Higashinaka, Ryuichiro
Kawamae, Noriaki
Sadamitsu, Kugatsu
Minami, Yasuhiro
Meguro, Toyomi
Dohsaka, Kohji
Inagaki, Hirohito
机构
关键词
Unsupervised clustering; Nonparametric Bayesian methods; Chinese restaurant process; Infinite HMM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised clustering of utterances can be useful for the modeling of dialogue acts for dialogue applications. Previously, the Chinese restaurant process (CRP), a non-parametric Bayesian method, has been introduced and has shown promising results for the clustering of utterances in dialogue. This paper newly introduces the infinite HMM, which is also a non-parametric Bayesian method, and verifies its effectiveness. Experimental results in two dialogue domains show that the infinite HMM, which takes into account the sequence of utterances in its clustering process, significantly outperforms the CRP. Although the infinite HMM outperformed other methods, we also found that clustering complex dialogue data, such as human-human conversations, is still hard when compared to human-machine dialogues.
引用
收藏
页码:2092 / 2095
页数:4
相关论文
共 50 条
  • [1] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112
  • [2] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [3] Non-parametric and unsupervised Bayesian classification with Bootstrap sampling
    Zribi, M
    [J]. IMAGE AND VISION COMPUTING, 2004, 22 (01) : 1 - 8
  • [4] BAYESIAN NON-PARAMETRIC MATRIX FACTORIZATION FOR DISCOVERING WORDS IN SPOKEN UTTERANCES
    Mirzaei, Sayeh
    Van hamme, Hugo
    Norouzi, Yaser
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2013,
  • [5] Bayesian Non-Parametric Parsimonious Gaussian Mixture for Clustering
    Chamroukhi, Faicel
    Bartcus, Marius
    Glotin, Herve
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1460 - 1465
  • [6] A NON-PARAMETRIC BAYESIAN CLUSTERING FOR GENE EXPRESSION DATA
    Wang, Liming
    Wang, Xiaodong
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 556 - 559
  • [7] Non-Parametric Document Clustering by Ensemble Methods
    Gonzalez, Edgar
    Turmo, Jordi
    [J]. PROCESAMIENTO DEL LENGUAJE NATURAL, 2008, (40): : 91 - 98
  • [8] A Bayesian non-parametric approach for automatic clustering with feature weighting
    Paul, Debolina
    Das, Swagatam
    [J]. STAT, 2020, 9 (01):
  • [9] Comparing non-parametric ensemble methods for document clustering
    Gonzalez, Edgar
    Turmo, Jordi
    [J]. NATURAL LANGUAGE AND INFORMATION SYSTEMS, PROCEEDINGS, 2008, 5039 : 245 - 256
  • [10] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199