A NON-PARAMETRIC BAYESIAN CLUSTERING FOR GENE EXPRESSION DATA

被引:0
|
作者
Wang, Liming [1 ]
Wang, Xiaodong [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
Hierarchical Dirichlet processes; Dirichlet processes; clustering; microarray data;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this paper, we propose a non-parametric Bayesian clustering algorithm based on the hierarchical Dirichlet processes (HDP). The proposed clustering algorithm captures the hierarchical features prevalent in biological data such as the gene express data by introducing a hierarchical structure in the model. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor. We conduct experiments on the yeast galactose datasets and yeast cell cycle datasets by comparing our clustering results to the standard results. The proposed clustering algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. The experiments also show that the proposed clustering algorithm provides more information and reduces the unnecessary clustering fragments than the clustering algorithm based on Dirichlet mixture model.
引用
收藏
页码:556 / 559
页数:4
相关论文
共 50 条
  • [1] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [2] Bayesian Non-Parametric Parsimonious Gaussian Mixture for Clustering
    Chamroukhi, Faicel
    Bartcus, Marius
    Glotin, Herve
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1460 - 1465
  • [3] A non-parametric Bayesian model for bounded data
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    [J]. PATTERN RECOGNITION, 2015, 48 (06) : 2084 - 2095
  • [4] A Bayesian non-parametric approach for automatic clustering with feature weighting
    Paul, Debolina
    Das, Swagatam
    [J]. STAT, 2020, 9 (01):
  • [5] Unsupervised Clustering of Utterances using Non-parametric Bayesian Methods
    Higashinaka, Ryuichiro
    Kawamae, Noriaki
    Sadamitsu, Kugatsu
    Minami, Yasuhiro
    Meguro, Toyomi
    Dohsaka, Kohji
    Inagaki, Hirohito
    [J]. 12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2092 - 2095
  • [6] Non-parametric Bayesian analysis of clustered survival data
    Lee, Jaeyong
    [J]. STATISTICS, 2008, 42 (06) : 515 - 526
  • [7] Sequential Embedding Induced Text Clustering, a Non-parametric Bayesian Approach
    Duan, Tiehang
    Lou, Qi
    Srihari, Sargur N.
    Xie, Xiaohui
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT III, 2019, 11441 : 68 - 80
  • [8] RARE JAROSITE DETECTION IN CRISM IMAGERY BY NON-PARAMETRIC BAYESIAN CLUSTERING
    Dundar, Murat
    Ehlmann, Bethany L.
    [J]. 2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [9] Bayesian inference for longitudinal data with non-parametric treatment effects
    Mueller, Peter
    Quintana, Fernando A.
    Rosner, Gary L.
    Maitland, Michael L.
    [J]. BIOSTATISTICS, 2014, 15 (02) : 341 - 352
  • [10] A non-parametric Bayesian approach for clustering and tracking non-stationarities of neural spikes
    Shalchyan, Vahid
    Farina, Dario
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2014, 223 : 85 - 91