RARE JAROSITE DETECTION IN CRISM IMAGERY BY NON-PARAMETRIC BAYESIAN CLUSTERING

被引:0
|
作者
Dundar, Murat [1 ]
Ehlmann, Bethany L. [2 ]
机构
[1] Indiana Univ Purdue Univ, Comp & Informat Sci Dept, Indianapolis, IN 46202 USA
[2] CALTECH, Jet Prop Lab, Div Geol & Planetary Sci, 4800 Oak Grove Dr, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
CRISM; jarosite; rare target detection; non-parametric bayesian; clustering;
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Discovery of rare phases on Mars is important as they serve as indicators of the geochemistry of the Mars surface and facilitate understanding of mineral assemblages within a geologic unit. Identification of rare minerals in high spatial and spectral resolution Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) visible/shortwave infrared (VSWIR) images has been a challenge due to the presence of both additive and multiplicative noise and other artifacts, affecting all collected images, in addition to the limited spatial extent of regions hosting these minerals. In an effort to automate this task we evaluate various clustering algorithms using the detection of rare jarosite, associated with spectrally similar minerals in CRISM imagery, as a case study. We compare non-parametric Bayesian and standard clustering algorithms and show that a recently developed doubly non-parametric Bayesian model could be effective for this task.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [2] Bayesian Non-Parametric Parsimonious Gaussian Mixture for Clustering
    Chamroukhi, Faicel
    Bartcus, Marius
    Glotin, Herve
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1460 - 1465
  • [3] A NON-PARAMETRIC BAYESIAN CLUSTERING FOR GENE EXPRESSION DATA
    Wang, Liming
    Wang, Xiaodong
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 556 - 559
  • [4] A Bayesian non-parametric approach for automatic clustering with feature weighting
    Paul, Debolina
    Das, Swagatam
    [J]. STAT, 2020, 9 (01):
  • [5] Unsupervised Clustering of Utterances using Non-parametric Bayesian Methods
    Higashinaka, Ryuichiro
    Kawamae, Noriaki
    Sadamitsu, Kugatsu
    Minami, Yasuhiro
    Meguro, Toyomi
    Dohsaka, Kohji
    Inagaki, Hirohito
    [J]. 12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2092 - 2095
  • [6] Bayesian non-parametric detection heterogeneity in ecological models
    Daniel Turek
    Claudia Wehrhahn
    Olivier Gimenez
    [J]. Environmental and Ecological Statistics, 2021, 28 : 355 - 381
  • [7] Bayesian non-parametric detection heterogeneity in ecological models
    Turek, Daniel
    Wehrhahn, Claudia
    Gimenez, Olivier
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2021, 28 (02) : 355 - 381
  • [8] Sequential Embedding Induced Text Clustering, a Non-parametric Bayesian Approach
    Duan, Tiehang
    Lou, Qi
    Srihari, Sargur N.
    Xie, Xiaohui
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT III, 2019, 11441 : 68 - 80
  • [9] A non-parametric Bayesian approach for clustering and tracking non-stationarities of neural spikes
    Shalchyan, Vahid
    Farina, Dario
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2014, 223 : 85 - 91
  • [10] BnpC: Bayesian non-parametric clustering of single-cell mutation profiles
    Borgsmuller, Nico
    Bonet, Jose
    Marass, Francesco
    Gonzalez-Perez, Abel
    Lopez-Bigas, Nuria
    Beerenwinkel, Niko
    [J]. BIOINFORMATICS, 2020, 36 (19) : 4854 - 4859