VERSATILE BAYESIAN CLASSIFIER FOR MOVING OBJECT DETECTION BY NON-PARAMETRIC BACKGROUND-FOREGROUND MODELING

被引:0
|
作者
Cuevas, Carlos [1 ]
Mohedano, Raul [1 ]
Garcia, Narciso [1 ]
机构
[1] Univ Politecn Madrid, ETS Ing Telecomunicac, Grp Tratamiento Imagenes, Madrid, Spain
关键词
Moving object detection; Bayesian classifier; prior probability estimation; background-foreground modeling;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [1] Background-foreground interaction for moving object detection in dynamic scenes
    Chen, Zhe
    Wang, Ruili
    Zhang, Zhen
    Wang, Huibin
    Xu, Lizhong
    [J]. INFORMATION SCIENCES, 2019, 483 : 65 - 81
  • [2] Non-parametric background and shadow modeling for object detection
    Tanaka, Tatsuya
    Shimada, Atsushi
    Arita, Daisaku
    Taniguchi, Rin-Ichiro
    [J]. COMPUTER VISION - ACCV 2007, PT I, PROCEEDINGS, 2007, 4843 : 159 - 168
  • [3] Non-parametric statistical background modeling for efficient foreground region detection
    Tavakkoli, Alireza
    Nicolescu, Mircea
    Bebis, George
    Nicolescu, Monica
    [J]. MACHINE VISION AND APPLICATIONS, 2009, 20 (06) : 395 - 409
  • [4] Non-parametric statistical background modeling for efficient foreground region detection
    Alireza Tavakkoli
    Mircea Nicolescu
    George Bebis
    Monica Nicolescu
    [J]. Machine Vision and Applications, 2009, 20 : 395 - 409
  • [5] TRACKING-BASED NON-PARAMETRIC BACKGROUND-FOREGROUND CLASSIFICATION IN A CHROMATICITY-GRADIENT SPACE
    Cuevas, Carlos
    Garcia, Narciso
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 845 - 848
  • [6] Fast and robust moving objects detection based on non-parametric background modeling
    Han, Jianping
    Pan, Zhigeng
    Zhang, Mingmin
    [J]. Journal of Software, 2009, 4 (10) : 1084 - 1090
  • [7] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112
  • [8] Improved background modeling for real-time spatio-temporal non-parametric moving object detection strategies
    Cuevas, Carlos
    Garcia, Narciso
    [J]. IMAGE AND VISION COMPUTING, 2013, 31 (09) : 616 - 630
  • [9] Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking
    Li, Dawei
    Xu, Lihong
    Goodman, Erik D.
    Xu, Yuan
    Wu, Yang
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2013, 20 (03) : 201 - 216
  • [10] Error Bounded Foreground and Background Modeling for Moving Object Detection in Satellite Videos
    Zhang, Junpeng
    Jia, Xiuping
    Hu, Jiankun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2659 - 2669